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Predicting the effectiveness of
evolutionary testing for the measurement
of extreme execution times.

H-G Gross, B F Jones, D E Eyres.

School of Computing, Univer sity of
Glamorgan, Pontypridd, CF37 1DL, UK.
Bfjones@glam.ac.uk

Abstract.

Evolutionary algorithms have been used to
generate tests automatically to measure the
worst and best case execution times for
software. Metrics are proposed to predict
the effectiveness of evolutionary algorithms;
the metrics are based on compl exity
measured in terms of decisions weighted by
nesting level. Other factors are the cohesion
and coupling of the module and the filtering
effect of predicates that have only a small
probability of execution.

I ntroduction.

The worst and best case execution times
(W/BCET) of areal-time system are
important since the system must produce
results according to a specified time
schedule. W/BCET analysis demands full
knowledge about the behaviour of the
underlying hardware, the scheduling and
timing of the operating system, and the
execution time of the real-time software
under development. Softwaretesting is a
widely used and accepted technique for
verification and validation and is considered
the ultimate check on the conformance of
the software to its specification.

Evolutionary testing (ET) is anew testing
technique based upon the

application of evolutionary algorithms (EA)
to the generation of test sets. Thistechnique
has already been successfully applied to
structural testing and for testing the timing
behaviour of systems. The latter
complements static analysis for timing.

Evolutionary testing is based on atypical
search/optimisation technique (EA) and such

techniques seldom reveal any information
on how close the best solution of the search
process comes to the actual optimal solution.
Thislack of quality assessment of the testing
process might have inhibited its widespread
use. Experiments with evolutionary testing
performed for this work revealed a
correlation between the success of the search
technique to find the optimal (or near
optimal) solution and the complexity of the
test object. Complexity is difficult to define
in the context of software. Many different
interpretations can be found in the literature
ranging from "difficulty to maintain, change
and understand software" to "amount of
information which must be understood and
processed in order to produce, use maintain
and change software".

The key factorsin ensuring that ET executes
efficiently and effectively are the choice of
how to represent the input test set, how to
calculate the fitness of the solution
associated with the test set, and to decide
when to stop the search. Thereisno
guarantee that ET will find the W/BCET ina
reasonabletime or even if it will ever find it.
The aim of thiswork isto devise ametric to
predict whether ET is an appropriate
technique for the software under
investigation.

Complexity measuresfor evolutionary
testing

Many definitions of software complexity
emphasise cognitive complexity which
indicates the effort needed to understand the
software based on control flow or data flow.
Most software complexity metrics, including
the standard metrics of Halstead, McCabe,
Myers or Harrison concentrate on
complexity as understandability. Software
testability which can be seen as the degree
of difficulty to test software, isrelated to
software complexity, and most definitions of
software testability focus on one of its
properties. For example Bache and
Mullerburg use the terminology to calculate
the number of required test cases for atest
object for satisfying a specific test strategy.



They define this asthe effort to test
software, although it is not the same as
'software testability’.

A very specific definition of an objective
complexity measure, and consequently
testability, is required for evolutionary
testing. A possible definition of complexity
could be "the difficulty for the testing
process (EA) to generate test cases which
satisfy the test criterion”. On amodule level,
complexity may be seen as the sum of all
program properties which make it difficult
for an evolutionary algorithm to generate
input parameters corresponding to the test
objective, for instance finding the worst-case
execution time. In this case, testability can
be defined as the degree of difficulty to
successfully apply evolutionary testing to a
particular module. Here, complexity must be
understood, not from the human perspective,
but primarily from the perspective of the
(automatic) testing methodology whichis, in
this case, an optimisation algorithm.

The execution of aprogram under test
ideally covers every single entry-exit path
which resultsin full path-coverage. This can
be regarded as a reasonable strategy for
testing the timing behaviour of rea-time
software since al program sections must be
executed in order to determine their
execution time. Consequently, the testing
process must be able to examine al possible
pathsin order to 'decide’ which of them are
most promising for the required testing
objective. The difficulty of generating input
according to this requirement is determined
by the decisionsin the test program, and
here, difficult’ decisions creste serious
problems for evolutionary testing. For
instance, these can be decisions that create
small domains so that the branch is only
taken with avery low probability.

Thefollowing list outlines properties of test
programs which have been identified as
creating most problems for an evolutionary
testing process to generate test cases for
finding the B/WCET:

» High parameter interdependence and/or
large input vectors. High
interdependence may either be caused
by decisions which require some of the
input to be in a specific relation, for
example a specified pattern, in order to
lead the program flow into a distinct
branch or by calculations on input. In
the second case the values of the input
variables determine the time it takes to
perform the calculations.

* Small input domains or single-value
domains. These are caused by decisions
that execute one branch with avery low
probability. This restricts the ability of
the EA for large search spaces asit is
unlikely to generate the required value
by chance.

e Parameter dependent loops. Loops
whose number of iterations depend upon
input variables are equivalent to
decisions with a single-value domain.
Here, the EA must generate input that
leads to the lowest or highest number of
iterations for the loop.

* Nesting and sequencing. Combinations
of all previousitems.

A simplestructural complexity measure

Determining the nesting/sequencing of a
program can be regarded as an

initial step towards a structural predictive
measure of ET performance. A number of
nesting measures exist but those based upon
aprogram’s flowgraph are particularly
useful for ET; each node is assigned a
weighting that can be used to specify the
node complexity more accurately. The
complexity may be defined as:

BAND = i L(i) * n()

where N is the number of nodesin the
flowgraph, n(i) isthe weight of nodei



(typicaly n(i) = 1) and L(i) isthe nesting
level of nodei. This captures the total
nesting/sequencing of a program. From the
measure BAND we derive the measure
Essential BAND (ESS-BAND) which only
considers the decision nodes in a flowgraph.
This measure defines the essentia nesting
(or decision nesting/sequencing) of a
program. The measure is defined as

ESS-BAND = iL(i) *1n(i)

where D is the number of decision nodes
(branches/loops) in the flowgraph. This can
be regarded as a simple basic structural
measure which is sufficient to indicate the
ability of an EA to find input parameters for
atest object corresponding to full node
coverage (every nodeisvisited at least
once). However, it is not sufficient for atest
object containing parameter dependent loops
or single-value domains. For these test
objects, the weight n(i) in measures BAND
and ESSBAND issetton(i) = 2. The
performance of the search technique
dropped by about 20-50 % depending on the
nesting level on which the conditiona was
inserted and depending on the size of the
search space. We believe that afactor of 2
for each of these critical nodes capturesthis
effect accurately enough.

M easurements and testing performance
results.

The genetic algorithm used in the
experiments for this work was devel oped by
the authors and is intentionally simple and
fixed. Although there exist specific
evolutionary operators for some test object
classes which improve the overall outcome,
this prohibits a comparison of the reaction of
the search technique on the different test
objects. The am isto determine whether a
particular class of software is appropriate for
timing analysis using ET rather than to
optimise the genetic operators. The
following genetic operators were used
throughout the experiments:

e Population size = 40 (keep forty best
individuals).

*  Tournament selection, tournament size
=4,

» Discrete recombination (uniform
crossover p, = 0.5).

e Low constant mutation rate (py, =
0.001).

*+ Rank Based Fitness.

+ Random initidisation of the
chromosomes.

These values were kept constant during the
experiments. The testing terminated when
the fitness had not improved for 200
generations. For each module under
investigation, the path corresponding to the
WCET was determined by inspection. The
fitness function for each test set generated
by the EA was the achieved percentage
coverage of the worst case execution path.
Thiswas measured by instrumentation of the
source/object code. The condition for using
atest module in these experimentsisthat its
actual worst-case execution path can be
analysed/retrieved. Even for many
moderately complex modulesthisisan
extremely difficult task and provides the
motivation for thiswork. The test objects are
three ssimple sorting algorithms, afew
modul es taken from a graphical contour
plotting package and some taken from a
robot vision system (see table 1).

Table 2 displays the properties of the test
objects and their measures Essential BAND
(ESS-BAND) and the successrate of the
evolutionary search (last column in table 2).
The control flow path corresponding to the
WCET is known for the modules under
investigation and the last column isthe
percentage of nodes covered during the
evolutionary testing process. It is not to be
confused with the measured WCET of the



test module compared to the actual
maximum execution time. Thisrelation
depends upon the execution time

compl exities between the decision nodes for
which no measure is defined yet.

The modulesin table 2 are ordered
according to their ET-success rate measured
as the percentage of the worst case
execution time path covered. They are
compared to the measured ESS-BAND. In
general, ESS-BAND is capable of indicating
the success of the evolutionary testing
process quite accurately for many cases. The
overall correlation of measure and ET
performance of the test objectsisgivenin
figure 1 which can be used to predict the
evolutionary testing success rate for a new
module. However, afew cases occurred
during the experiments where the correlation
was poor. These are exceptions which must
be further investigated. The module polex1
isaredesigned version of the original
module polex. The original never executes
the longest path despiteits low structural
complexity. It violates an important
principle of 'good software design’: low
coupling. The input vector of the original
module is 1080 byteslong with only 18
bytes actually accessed. This creates an
insurmountable difficulty for the
evolutionary search as the probability of the
EA changing one of the 18 bytesisslim.
Changing the design and reducing the size
of the input vector leads to the generation of
the worst-case execution path. This
corresponds to the low complexity of this
new module ESS-BAND= 2(table 2).

The poor performance of the search
technique for module dzz is caused

by aviolation of the principle of high
cohesion. By investigating the

structure of this module, three unrelated
aspects of functionality were identified. A
new design of this original module resulted
in three new modules: dzz1, dzz2 and dzz3.
The new units could be implemented much
more simply (ESS-BAND= 6 and 10
compared to ESS-BAND= 65 for the original
unit) so that the performance of the search

technique increased dramatically for
modules dzz1= 100% and dzz3= 100%.
However, for the second module this drastic
improvement was not observed. Thisis due
to extremely narrow domains for two
decision nodes in the flowgraph. These two
nested decisions only evaluate to true for 30
out of 65536 valuesin order to follow the
longest execution path. This narrow domain
is not captured by the measured ESS-BAND.
It is easy to see for humans why the
outcome of this module is so poor but at this
stageit is not quite clear how to implement
an automatic tool which would capture this
type of complexity.

ET performs as expected for the three
sorting algorithms is, bsl and bs2. Their
complexity ESS-BAND isonly 6 but
repeated iterations have afiltering effect and
there is a high parameter interdependence.
Each value of alist for a sorting algorithm
must be in adefined relation to each other
valuein thelist. By increasing the size of the
input vector, the evolutionary search
becomes increasingly more difficult and the
overall performance decreases.

The size of the input domain and the
complexity of atest object are

inversely proportional. For increasing
structural complexity and decreasing size of
the input vector the outcome of evolutionary
testing stays constant for many cases.
Therefore, simple modules with huge input
vectors can be tested just as easily and
successfully as large and complex test
objects with moderately sized input vectors.
For the design of new modules it means that
keeping the input simple alows alarger and
more complex structure. ESS-BAND does
not currently measure this effect, but it
would be very useful to find away to assess
this.

A similar topic is assessing the filtering
effect which isimposed on the system
through high input interdependence. This
effect could probably be measured by
looking at operations which are carried out
on the input vector between and in the
decision nodes. Although, it is not quite



clear at this stage how to define rulesfor this e when branches have only a small
assessment as it isamentally demanding probability of execution.
process which is not easy to implement as an

algorithm for an automatic testing

environment.

Conclusion.

Thereis a strong correlation between the

complexity of software as measured by ESS

BAND and the efficiency of ET. Thereis

evidence that the performance of ET

deteriorates

» when the software module has been
designed with low cohesion and high
coupling;

« when node predicates depend on input
variables that are also changed in the

software, and
Module name Module Description
bsl Bubble Sort for list of four-byte integers.
bs2 Bubble Sort for list of four-byte integers.
is Insertion Sort for list of four-byte integers.
polex Contour Plotting - noisefilter.

polexl  Contour Plotting - redesigned polex.
delsng  Contour Plotting - noise filter.

epd Contour Plotting - extrapolation.

dzz Contour Plotting - noisefilter.

dzzl Contour Plotting - redesigned dzz part 1.
dzz2 Contour Plotting - redesigned dzz part 2.
dzz3 Contour Plotting - redesigned dzz part 3.

di Raobot Vision - difference of two picture frames.
sobel Raobot Vision - edge detector.
min Robot Vision - filter.

median  Robot Vision - filter.

Table 1. Description of the test abjects.



Module N D BAND | ESS-BAND | Search Space | ETsuccess

(bytes) (%)
Polex1 13 1 15 2 18 100.0
Dzz1 6 4 14 6 1080 100.0
Dzz3 5 3 11 6 1080 100.0
sobel 9 2 16 3 1024 96.9
di 6 2 11 3 1024 95.9
Bs2 10 3 26 6 1024 95.9
is 9 3 21 6 1024 95.8
Bsl 7 3 19 6 1024 95.6
min 9 4 21 10 1024 87.2
polex 17 3 29 6 1080 80.0
median 15 4 39 10 1024 80.0
Dzz2 9 4 25 10 1080 5.0
delsing 6 4 23 19 1080 65.6
epd 9 6 42 27 1080 435
dzz 20 12 99 65 1080 1.0

Table 2: Properties of the test objects. N corresponds to the nodes in the flowgraph, D isthe
number of decision nodes. ET-success is the performance of the search technique. It can be
interpreted as the ability to generate test data to cover the path which leads to the longest
execution time. A value of 100 % for ET-success means that we cover al the nodes on the control
flow path for the longest execution path for this module.

Hrulm Id7-EARD wpuir 1 B2 pomc Ik s

1 1 1 1 |
1=y P - ... - - Ukjyadw p——
E & ., F2II¢XITa 3 1101w
e
EL N e -
T I T -
& -
g T
I I
E g b= ' -
15
= .
4 W [ Tl —
b - :[
- 1 L 1 1 L )
il » u k] FL o 18

Houin IiM-EANFD

Figure 1. ESS-BAND complexity versus average ET performance for ten tests for the modules
polexl, dzz1,dzz3, sobel, diff, bs2, is, bsl, min, median, delsing and epd.
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The development of embedded systems is a crucial
area of responsibility in industrial practice. Many
embedded systems need to meet red-time
requirements. This adds a new dimension to the
testing of such systems — not only the logical
behavior, but also the temporal behavior of these
systems requires thorough testing. In comparison
with conventional software systems, the testing of

with or without instrumentation in order to exclude
side-effects from the instrumentation. The results
generated from the test object will then be
automatically compared with each other and
deviations documented in the generated test
documentation.

is the

The most important property, however,

embedded systems is more complex due to several automation of testing temporal behavior by means of

specific technical characteristics such as the
development in host-target environments, the intense
interaction of the systems with the real application
environment, and the limited resources of the target
system. In order to facilitate systematic and largely
automated testing in defiance of the complexity of
real-time systems powerful testing tools are
required. Therefore, in this work the testing system
TESSY has been extended in order to support the
total testing life-cycle of real-time tasks. New
components allow a thorough examination of the
logical as well as the temporal behavior of the tasks.
The logical behavior is tested by means of function-
oriented and structure-oriented testing methods; the
testing of temporal behavior is automated by
evolutionary testing.

TESSY [1] concentrates mainly on test case design,
test execution, monitoring, test evaluation, and test
documentation. TESSY automates all test activities
except the test case generation for examining logical
program behavior. In order to automate the test
execution, the required test drivers are generated,
communication between host and target system is
automatically built, the program code s
instrumented and coverage analysis is performed,
and the execution times on the target system are
measured. Regression testing is also entirely
automated by TESSY.

For the generation of functional test cases, TESSY
uses the classification-tree method [2]. TESSY
therefore, contains the classification-tree editor, CTE
[3]. Branch testing is supported by the structure-
oriented test method. It is possible to instrument the
program code to record the branches executed
during functional testing and to define the amount of
branch coverage obtained. On the basis of this
information, the functional test may be further

improved or expanded by structure-oriented test

evolutionary testing. Errors in the temporal behavior
of real-time systems usually result from a violation
of specified timing constraints. The tester’s task is to
find input situations that result in the maximum
execution times. If the execution times exceed the
specified constraints, an error has been detected. In
evolutionary testing the search for the longest
execution time is considered a discontinuous,
nonlinear optimization problem, with the input
domain of the test object as search space, sets of test
data as decision variables, and execution times as
objective values. In order to solve this optimization
problem, evolutionary algorithms are used to
approximate the longest execution times of a test
object within several generations. The application of
evolutionary algorithms for test data generation is
known as evolutionary testing. Previous works have
shown that evolutionary testing is superior to
random testing [4] and systematic testing [5] when it
comes to examining the temporal behavior of real-
time systems.

Logical and temporal behavior testing are combined
throughseeding. Test data collected by the tester for
the functional test are integrated into the initial
population of the evolutionary test. This means that
the evolutionary test benefits from the tester’s
knowledge concerning the functions and internal
structures of the test object. The search does not
commence with a randomly generated population.

The first industrial application of TESSY with the
set of properties described in this paper was initiated
last year for testing an engine control system
containing more than 20 different tasks. All tasks
were tested for their logical program behavior with
the classification-tree method and complete branch
coverage for all the tasks was reached. Further, six
time-critical tasks have been tested for their
temporal behavior with evolutionary testing. To

cases. This test strategy guarantees an extensive testavoid probe effects (deviations from actual run-time

of the logical program behavior. The test can be run

behavior) instrumentation is turned off for the tasks.



The number of input parameters of these tasks varies
from 9 to 18 with a number of program lines set
between 39 and 119, the static program paths differ
from 1 to 37 million and the cyclomatic complexity
from 1 to 27. For each task evolutionary testing
generated between 7,500 and 15,000 sets of test
data. The target processor is the Siemens C167 with
1 Mbytes SRAM and with a speed of 20 MHz. The

testing of one single task took approximately 1 hour
and all tests were carried out on the target system
that has been designated for future use in cars. The
execution times were determined using hardware
timers of the target environment with a resolution of
400 ns. The results of the evolutionary tests
compared with the execution times determined by
the developers’ tests are shown in Table 1.

Longest execution timein ps Lines of No. of Program paths | Cyclomatic
task Evolutionary test Developer test code parameters Complexity
1 69,6 Us 67,2 us 41 18 224 10
2 120,8 pus 108,4 us 119 18 37.748.736 27
3 112,0 us 108,4 s 98 17 1 1
4 68,8 us 64,0 us 81 32 2 2
5 59,6 {is 57,6 s 39 14 408 11
6 58,4 is 54,0 Us 56 9 63.864 18

Table 1:

These TESSY extensions described have proved to

be highly applicable in practice for testing an
engine control system. Both, the logical and the
temporal behavior have been thoroughly tested. The
deployment of the CTE methodology has been
approved and utilized by the developers in order to
generate systematic test cases that obtained 100%
branch coverage. All other test activities are fully
automatically executed on the target system,
specifically the testing of the tempora behavior.

For the 6 tasks testing the temporal behavior, longer
execution times were found with the evolutionary

test than with the developers’ tests. This proved to
be the case even though evolutionary testing treats
the software as black boxes, whereas developers are
familiar with the function and structure of the
software and achieve 100% branch coverage. An
explanation might be the use of system calls,
linkage, and compiler optimization whose effects
on temporal behavior can only be guessed with
difficulty by the developers. However, it should be
noted that the execution times determined did not
exceed the specified timing constraints for any of
the tasks. The intensive testing has certainly
strengthened the developers’ confidence in a correct
temporal behavior of the system. With an average
number of 7 regression tests for each task,
TESSY’s entirely automated execution of
regression testing has proved extremely useful.

Future work on testing real-time systems will focus

on how static analysis techniques could support
evolutionary testing, e.g. for search space reduction,
to find a selection of evolutionary algorithms for

test use, and to obtain information on internal states
of the test object that may influence its temporal
behavior. Further, the combination of evolutionary

testing methods with static analysis techniques for
the estimation of worst case execution times is
meant to facilitate a precise forecast of the actual
longest execution times of tasks [6]. Future plans,

Maximum execution times of engine control tasks determined by evolutionary testing and developers’ tests

include the expansion of TESSY for integration
testing and the examination of the suitability of
evolutionary testing for system testing.
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ABSTRACT

Evaluating "Commercial-Off-The-Shelf" software is often a
trying task. One factor that makes this task difficult is that
source code for components is not available. In this paper,
we present an automated approach for evaluating COTS
software. This approach uses an interface probing strategy
to automate the evaluation process. Evaluation begins with
the developer providing a formal evaluation specification
of the component. The evaluation specification is
automatically translated into executable assertions that are
used by an evaluation engine to generate automatically
inputs to evaluate the component’s behavior. When the
evaluation engine generates an input causing an assertion
violation, the component does not exhibit the expected
behavior. On the other hand, when no assertion violation
occurs, it gives the developer more confidence that the
component exhibits the behavior as described in the
evaluation specification. Our initial experience has shown
that this approach may be a cost-effective way of
evaluation of COTS components.

Keywords

automated testing, COTS component evaluation, black box
testing, robustness testing, white box testing, automated test
generation, formal methods

1 INTRODUCTION

Since the beginning of the 1990’s, the demand for large and
complex software systems has been steadily increasing.
The development of these systems is difficult and costly. In
recent years several new technologies have emerged that
have a significant impact on new ways of software
development. One of these technologies is the reuse and
integration of previously developed software components
into newly developing software systems. This approach has
the potential to reduce cost and cycle time thus giving
developers the ability to deliver a complex product faster
and at a lower cost to a customer. Of particular interest is
the ability to integrate specialized units of software called

"commercial-off-the-shelf" (COTS) components. This
allows developers to build software systems consisting of
COTS components and software components developed in
house.

Development with COTS components has many
advantages [18]: functionality is instantly accessible,
components may be less costly, and components may have
been developed by experts in the area. Along with many
advantages of using COTS components, there are several
disadvantages. A developer is presented with a COTS
component that often has only a brief description of its
functionality, carries no guarantee of adequate testing, and
has a limited description of overall component quality.
Adding to these difficulties, the developer often does not
have access to the source code of the component.
Typically, COTS components are considered black boxes
because developers only have access to their interfaces.
The common way to interface with such components is
through an application program interface (API). Developers
wanting to use COTS components face the problem of
determining the exact functionality and quality of these
components. They want to have some assurances that the
component’s functionality corresponds to the expected
functionality. In addition, developers want some assurances
of component's quality; no one is willing to use a low
quality component in, for example, a safety-critical
software system. Another issue is portability of COTS
components. In many cases, the expectation is that the
behavior of a component(s) in one environment is the same
as in another. Designers may want some assurance this
expectation is correct.

Developers must have a good understanding of COTS
components in order to integrate them properly into a
system under development. From the limited information
available about components, developers must identify
component properties (e.g., functionality, limitations, pre-
conditions) in order to identify which properties exhibited
by the component are in conflict with expected properties,
other components, or with a system design. Once the
component is accepted for integration, these conflicts, or
mismatches, must be repaired through component
adaptation. Only by correcting these mismatches is it



possible to integrate the component into the system.

Component evaluation is one possible solution to these
problems. Typically, a manual evaluation of COTS
components consists of gathering information about the
component’s behavior from available documentation and
performing interface probing. Interface probing is a
technique where a developer designs a set of input cases,
executes the component with these input cases, and
analyzes the component’s outputs. This process of probing
helps the developer to evaluate component properties. After
an initial evaluation, the developer may design additional
input cases to clarify its functionality and limitations. This
approach may be an effective way of evaluation of overall
component functionality. However, one of the major
disadvantages of this approach is that frequently a large
number of input cases are needed to analyze a component.
Some component properties can be easily evaluated by
simple interface probing, but evaluation of other properties
may require significant interface probing and may be very
labor-intensive, tedious, and expensive. In addition,
developers may frequently miss major component
limitations and incorrectly assume certain component
functionality that does not represent the actual component
functionality. This may lead to incorrect use of the
component when it is integrated with a software system
under development. In summary, manual interface probing
is a labor intensive and highly inaccurate approach.

2 AUTOMATED EVALUATION APPROACH

In this paper, we present an automated approach for
evaluating COTS software. This approach uses an interface
probing [12] strategy to automate this evaluation. In many
cases, significant probing is necessary to evaluate whether
a component has a specific behavior or not. Therefore, a
major objective is automating the evaluation process.
Evaluation begins with the developer providing a formal
evaluation specification of the component that describes the
expected component’s behavior and the characteristics of
the inputs. The evaluation specification may consist of
assertions describing expected behavior and characteristics
of component inputs. The assertion describing the
component’s behavior is called the post-condition
assertion. The assertion describing the input is called the
pre-condition assertion that describes the characteristics of
input that yield the expected behavior. The evaluation
specification is automatically translated into executable
assertions. These executable assertions are used by an
evaluation engine (an automated test case generator) that
generates inputs to evaluate the component’s behavior.
When the evaluation engine generates an input causing an
assertion violation, the component does not exhibit the
expected behavior. On the other hand, when no assertion
violation occurs, it gives the developer more confidence
that the component exhibits the behavior as described in the
evaluation specification.

It usually is not possible to define a complete set of
assertions that describe the expected component’s behavior
at the beginning of the evaluation process. Using help files,
vendor provided documentation and any other available
source; it is possible to construct the assertions representing
the evaluator’s initial understanding of the component. An
assertion violation occurs when the post-condition assertion
evaluates as false. When analyzing the reason for each
violation, the evaluator may determine that the assertions
are inadequate. As a result, the evaluator may refine the
evaluation specification.

Based on the component’s interface and its formal
evaluation specification the evaluation engine: (1)
generates input(s), (2) executes the component with this
input, and, (3) executes the code representing executable
assertions. Each time an assertion violation is detected, the
input and output are logged for the future review. These
three steps are repeated until specified resources are
exhausted, e.g., time limit, number of cases. If all the
designated resources are exhausted and no violations or
exceptions are detected, the developer may have more
confidence that the component has the characteristics
described in the evaluation specification.

Generating input data for interface probing is very similar
to test case generation. As a result, existing automated test
generation tools are used in the component evaluation
process. Test data generation, for software, is the process of
identifying a set of test cases satisfying a selected testing
criterion. The existing automated test generation tools can
be classified as random data generators, black-box test
generators, white-box test generators, and robustness test
generators. Each of these tools has its strengths and
limitations depending on types of inputs and information
available. As a result, the evaluation engine uses all four-
test generation methods.

Random data generator

Random data generation [3] is the process of selecting, at
random, component inputs and then executing the
component on these inputs. Random inputs can be
automatically generated based on a component interface
specification for simple data types, e.g., integer, real, string,
arrays, etc. However, for more advanced data types the
developer must provide component specific routines to
generate randomly values for input parameters or provide
for each input parameter a set of values to be used in
random generation,

Black-box test generator

Black box testing uses the program specification to design
test cases. Two major black-box testing methods are widely
used: equivalence partitioning and boundary-value analysis
[2, 15]. In these methods program inputs fall into two
categories: valid inputs and invalid inputs. In equivalence,
partitioning input space is divided into valid partitions



(containing valid inputs) and invalid partitions (containing
invalid inputs). This partitioning is done based on a
program specification. Test cases are selected from each
valid partition and each invalid partition. Boundary-value
analysis considers boundaries between valid and invalid
partitions and selects test cases on these boundaries and
around boundaries. Several automated black-box test
generation tools [1] are available for generating test cases
from a test specification, e.g., pre-condition assertions. The
evaluation engine uses pre-condition assertions to automate
the process of black-box test generation using the same
techniques employed in the existing black-box test
generators.

Robustness test generator

A component is robust if it can function correctly despite
invalid inputs, exceptional inputs, and stressful conditions.
There exist a number of robustness test generators [13, 14,
17]. For example, Ballista [13] is a test generation tool that
generates inputs having a high probability of causing an
exception, e.g., a crash. Frequently, such test cases are
dependent on a component’s input data type. For example,
for C pointers input values generated may include NULL
and —1; for an integer data type input values generated may
include 0, 1, -1, maximum integer value, maximum integer
value minus 1, minimum integer value, minimum integer
value plus 1. Our evaluation engine generates robust inputs
similar to the inputs generated by the existing robustness
test generators.

White-box test generator

White-box testing is the process of identifying a set of test
cases that satisfies a selected structural testing criterion,
e.g., statement coverage, branch coverage, etc. An
automated white-box test generation tool generates input on
which a selected element, e.g., a statement, is executed. A
major problem of previously described generation methods
is that they do not use information about the internal
structure of an assertion to generate input violating the
executable assertion(s). Although source code for the
component is not available, source code for assertions is
automatically generated and may be used during the
evaluation [11]. Each assertion has a special source
statement (target statement) whose execution indicates an
assertion violation. The goal for the evaluation engine is to
find the component input on which a target statement is
executed. As a result, the existing methods of automated
white-box test data generation are applicable.

When the source code of a COTS component is available,
all of the existing test generation methods can be used, e.g.,
[4,5,6,7, 8,9, 10, 16]. However, in most cases the source
code of a COTS component is not available. In such cases,
only execution-oriented test generation methods may be
used [7, 9, 10, 11]. Execution-oriented test generation starts
by initially executing a component with arbitrary input.
When a post-condition assertion is executed, its execution

flow is monitored. During the assertion execution, the
evaluation engine decides whether the execution should
continue through the current branch or an alternative
branch should be taken. For example, the currently
executed branch does not lead to the execution of the target
statement. If an undesirable execution flow at the current
branch is observed, then a real-valued function is
associated with the branch. Function minimization search
algorithms are used to automatically find new input that
will change the flow execution at this branch.

3 EXPERIMENT

The major goal of the experiment was to determine whether
automated interface probing using a relatively simple
formal evaluation specification could adequately evaluate
commercial COTS components. To minimize subjectivity,
we decided to evaluate the same commercial components
existing in several different environments. These
components were expected to provide the same behavior
across all environments. As a result, the objective of the
experiment was to use our approach to detect
inconsistencies in these COTS components.

In our experiment, we selected several functions from the C
standard library as COTS components. In the experiment,
we used simple formal evaluation specifications expressed
in terms of assertions. These assertions did not cover all
aspects of component’s functionality; they were relatively
simple assertions capturing relationships between
component’s inputs and outputs. The starting point for the
assertion development was the help facility of the target
compiler, or other documentation. From these descriptions,
initial assertions were developed and then modified as
experience was gained with the component. These
assertions were very easy to develop.

Automated interface probing was used for each component
in different C++ environments. It was expected that
standard C library functions (components) should behave
consistently in all listed environments. In the experiment
the following environments were used: Microsoft’s Visual
C/C++, Borland Builder 4, Borland Turbo C/C++, LINUX
GNU C/C++, SGI GNU C/C++.

A component inconsistency is a situation where a
component, with the same input, behaves differently across
environments, i.e., a component produces different results
on the same input in different environments. In the
experiment, post-condition assertions were used to detect
component inconsistencies. A component inconsistency is
detected when a component with the same input produces a
result that violates the assertion in one environment but it
does not violate the assertion in another environment, or the
component, with the same input, generates an exception
condition in one environment and not in the other. In the
latter case, no assertion is necessary because the exception
condition is detected by the environment.



For each component under investigation, the same interface
probing strategy was used in each C++ environment.
During interface probing, all assertion violations and
corresponding inputs were recorded. These inputs were
then “applied” in the remaining environments to determine
whether similar violations occurred. When no violation was
observed in one environment, a component inconsistency
was detected. When the same assertion violation occurred
in all environments, the condition was not considered an
inconsistency.

In the experiment, we investigated 8 components. We
detected component inconsistencies in 6 components. In the
following components inconsistencies were detected: atoi(),
sin(), strncpy(), strespn(), isdigit(), and isalnum(). In two
components exception conditions occurred.

Our initial experience with the approach has shown that the
effort required to develop formal evaluation specifications
in the form of assertions pays off in detection of component
inconsistencies. Using easy to develop evaluation
specifications we were able to detect inconsistencies in
commercial components.

4 CONCLUSIONS

In this paper, we presented an automated approach for
evaluating COTS components. This approach uses interface
probing to automate the evaluation process. Evaluation
begins with the developer providing a formal evaluation
specification of the component. The evaluation
specification is automatically translated into executable
assertions that are used by an evaluation engine to generate
automatically inputs to evaluate the component’s behavior.
The evaluation engine uses the existing automated test
generation methods to generate inputs during the evaluation
process. An initial experiment has shown that the approach
can effectively detect discrepancies in commercial
components. The major advantage of the presented
approach is that after a component’s formal evaluation
specification is provided the approach is fully automated.

The presented approach has been partially implemented.
Currently we use a simple language to describe evaluation
specifications. This language works fine for relatively
simple components. We plan to develop a more powerful
formal language that can be used to describe evaluation
criteria of more complex COTS components. We also plan
to perform a larger experiment to determine the
effectiveness of the presented approach and to develop new
methods of automated input generation that can be used in
the evaluation process.
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Abstract

We present a description of work in

progress that investigates the feasibility —
of the automated production of test data —

to both populate a database for load

— ‘correctness’ testing

Two of the functions that a fully
automated test data generator has to
provide are: -

» populate the database with valid data
for load/query testing

» produce invalid data to test the
constraints of the database by using
limits/boundary conditions values of
individual fields and referential
relationships.

Current commercial database test data
generators such as: -

— TestByte 3

Test Base

DataTect

testing and establishing the integrity of populate the database with random sets

the stored data. A prototype test data

of characters/numbers dependent on the

generator has been produced that worksdatatype of a given record field. The
on a simple ACCESS 97 database. This more sophisticated types allow users to
prototype performs the following basic  define explicitly intrinsic and/or external

functions: -

» database table structure analysis

» setting field entry limits by parsing
validation rules

* valid & invalid test data generation

» error handling & recovery

Introduction

The aim of this work is to generate test

data automatically that checks

» the ability to store/retrieve,
update/delete records correctly

— query testing

» the variation in performance with

data sets as sources for fields requiring
names, cities etc to provide relevant
entries and/or user definition of value
ranges, permitted/forbidden values. Thus,
as they require user input to set up field
restrictions and knowledge of database
structure, these fail to be fully automated.
In addition, they fail to attempt to test the
‘correctness’ of the database by including
the production and error handling of
invalid data. A user-accessible log of any
such errors produced will be of use in
ensuring the database design satisfies
user-requirements on individual field.

The prototype system developed works
with Microsoft ACCESS. The software
interrogates the database for its structure
using the ACCESS table definitions;

— load testing

obtained for individual fields to identify

« the need to handle incorrect data (i.e Ny Presentranges, specified

not obeying data integrity
constraints)

valid/invalid entry values etc. These
values may then be stored and used in



data generation without the need for useihe second is determined by ensuring

input. data integrity constraints are handled.
This can be done at either Internal or
These conditions are then used to External Schema Levels, that is with the

generate both valid records to populate implementation of the database design
the tables and records containing invaliditself (Internal) or as part of the

values to test the validation of a given application utilising the database

field. On entry the error would be (External) [2].

‘trapped’ and sent to an error log file and

the entry program then needs to recoverFor the purposes of test data generation

and move to next record (e.g. by we will assume that the former method is
replacing with a valid default entry or by used (Internal Schema Level) and the
deleting the erroneous record). data integrity constraints are integral to
the database implementation. This is
Since the database considered is likely to be the case since it is the safer
comprised of a single table only, no method for ensuring data integrity [2].

testing of referential constraints is

required, the prototype concentrates on Within Relational databases the data

testing of user/general constraints. integrity constraints can be divided into
three types: -

Database ‘Correctness’ 1. Key/Entity, to ensure that all records
The following is a brief discussion of the  in a table are identified by a unique
concepts involved in the ‘correctness’ of  identifying attribute and there are no

databases. It is not intended to be fully duplicates or null values.
comprehensive or mathematically 2. Referential, if a record contains a
rigorous. foreign key field. The foreign key
‘Correctness’ is defined in the IEEE value must be a member of the set of
Standard Glossary of Software values contained in the primary key
Engineering as freedom from faults, field of the ‘parent’ entity or be null.

meeting of specified requirements and 3. User/General and so relate to the data
meeting user needs & expectations. [1] of a given field. They may be set to
model the limits of the real-life

In terms of databases this can be condition the user needs to store
expressed as how successfully the information about.
database: -

[2]
1. models the real-life system —
database design schema From the above it can be seen that the
2. the data store represents permitted automated ‘correctness’ testing suggested
‘real’ possibilities only — i.e. data for the proposed data generator will
integrity relate to the data integrity constraints.
However information on the database
The former in relational databases is  structure could be deduced from any
carried out within the Conceptual error-log, providing an additional
Schema Level, in which the system is  opportunity to check original design
designed in terms of Entities and their analysis.
Relationships (i.e. in the E-R models
etc.) [2]. In addition, for the limited scope of the
current prototype (single isolated table),



it can be seen that the concentration is 0&. store the generated test data in a text

the User/General constraints that are file

defined in the ACCESS Validation Rules6. read the test data from the text file
since referential constraints are into the database

irrelevant. 7. catch any error generated and write it

to an error log and recover from the
Much of the current research in the area  error
of database constraint testing is directed
towards the problems of distributed
databases [3,4 & 5]. In such databases, Results
where data is stored across several The prototype was developed and tested
individual dissimilar databases, it is with a simple table, ‘Customers’,
necessary to reconcile several possibly comprised of 6 fields of representative
heterogeneous components into a singledata types (numeric, text, and date). In
whole. This involves the problems of: - addition, the validation rules were
written to contain the most commonly
« generating a single global design ~ expected types of restriction on fields
schema from the constituent local  (upper/lower limits, permitted/non-
schema permitted values, lists and entry
« combining multiple sets of integrity ~patterns).

constraints into a single global set for
application across the distributed The Customer Table structure is outlined

system. below: -
In terms of stand-alone databases, much | Field Name Type Default
of the current research is directed toward | FirstName Text John
development of methodologies to draw LastName Text Doe
up complete test-plans for testing Credit Currency | £100
database integrity [6]. That research Gender Text M
forms a basis for the preparation of test IDNoO Text 777700077
data by independent means. However, DoB Date Today’s date
the further step of including test data
production itself is not considered. The validation rules on the fields were as

follows: -
Method Field Name Validation Rule
The separate processes carried out by the FirstName > A - —
current prototype are listed below: - LastName >="A" AND <="N
Credit <=5000 AND >=0 AND <>1000

1. interrogate the table definition to get | Gender Can be like "M” or “F" but not

its structure like “X", "Y” or ozo 5
2 store the structure IDNo Can be like ZZ??###"

individual fields to produce field

constraint data , L
4. use the results of the parsing to The Parsing of the Validation Rules

generate data to that will populate théesulted in the following output: -
database with a combination of valid

. . Field No O
and invalid records '

Field Name FirstName



Data Type No. 10

Validation Rule:[FirstName]>"A"
Rule Token # 0 [FirstName]
Rule Token # 1 >

Rule Token # 2 "A"

Range - Low A

Range - High

OK Values

Non Values

Value Pattern

o ———

Field No 1

Field Name LastName

Data Type No. 10

Validation Rule:[LastName]>="A" And <="N"

Rule Token # 0 [LastName]
Rule Token # 1 >=

Rule Token # 2 "A

Rule Token # 3 And

Rule Token # 4 <=

Rule Token # 5 "N"

Range - Low A

Range - High N

OKValues A N

Non Values

Value Pattern

P ———

Field No 2

Field Name Credit

Data Type No. 5

Validation Rule:[credit]<=5000 And [credit]>=0

And <>1000

Rule Token # 0 [credit]
Rule Token # 1 <=
Rule Token # 2 5000
Rule Token # 3 And
Rule Token # 4 [credit]
Rule Token #5 >=
Rule Token # 6 0

Rule Token # 7 And
Rule Token # 8 <>
Rule Token # 9 1000

Range - Low 0

Range - High 5000

OK Values 5000 0
Non Values 1000

Value Pattern
———

Field No 3

Field Name Gender

Data Type No. 10
Validation Rule:Like "[MF]" And Like "['XYZ]"

Rule Token # 0 Like

Rule Token # 1 "[MF]"
Rule Token # 2 And

Rule Token # 3 Like

Rule Token # 4 "[Xyz]"
Range - Low

Range - High

OKValues M F

Non Values X Y z

Value Pattern

T

Field No 4

Field Name IDNo

Data Type No. 10

Validation Rule:Like "ZZ?2?###7?"
Rule Token # 0 Like

Rule Token # 1 "ZZHHH?"
Range - Low

Range - High

OK Values

Non Values

Value Pattern ZZ??2###?
T

Field No 5

Field Name DoB

Data Type No. 8

Validation Rule:>#12/31/49# And <#1/1/2000#

Rule Token # 0 >

Rule Token # 1 #12/31/49#
Rule Token # 2 And

Rule Token # 3 <

Rule Token # 4 #1/1/2000#

Range - Low 12/31/49
Range - High 1/1/2000
OK Values
Non Values

Value Pattern

Fokkkdkkkkkkkkkkkkk

Examples of the valid data generated are:

Nphhuat
Bkwujzw
460.698

M
ZZZM210K
18/02/68



Lalx One or more values are prohibited by the validation rule '|2'

Abx set for '|1'. Enter a value that the expression for this field can
accept.

376.3512 Record Number # 4

M Field # 2 Name : Credit

22AP8267 et

04/07/94

Examples of the invalid data generated

are: - Restrictions/Limitations of Current

A Prototype

Byr . .

1710.5961 - It works on single isolated tables

F . . .y . .

77 AKABOS - The yalldatlon rule condltl_on IS

27/01/64 restricted to a value from its own

Xuva field only

'“1930_2896 - Referential integr_ity is not checked as

F there are no foreign keys

2ZQG986A - The available field data types are

30/03/92 . .

Ctegkb restricted to Numeric, Text & Date

Jhmatzy - Only a single range of permitted

'Fl values is allowed per field

ZZUT699J - Only a single pattern format is

01/03/89 allowed per field (e.g. ??## #?? For a
Post Code)

- When an invalid data item is
encountered when entering record, it
is replaced with the default value in
Table Definition — note problem if
unique i.e. primary key.

The valid and invalid data files were then
merged into a single test data file. This
file was then used as input to the
database. A portion of the resulting error
log file is given below: -

Table: Customers .
Trapped Error # 3317 Conclusion
Error Description:-

One or more values are prohibited by the validation rule '[2'
set for '|1'. Enter a value that the expression for this field canThe current prOtOtype demonstrates the

accept. feasibility of developing a fully

Record Number # 1 automated test data generator for

Field # 0 Name : FirstName T g .

Invalid Entry : A databases. It indicates that the basic

operations of such an application

Table: Customers . .

Trapped Error # 3317 (mte_rrogatlon_of Qatabase structure,

Error Description:- parsing of validation rules etc.) are

One or more values are prohibited by the validation rule ‘|2' ; o ; :

set for '|1'. Enter a value that the expression for this field canPOSSIble' This is shown by U_S”?]g a Slmple

accept. ACCESS 97 database consisting of a

E_elcg;? Nunlber#3 N L single table. Also it shows that the testing
e ame : LastName - . . .

Invalid Entry : N* of the data integrity constraints defined -

in a database schema may be included in

Table:  Customers an automated data generation/table

Trapped Error # 3317 .
Error Description:- populating process.



As far as we know, both of the above  of Global Schema’, Data & Knowledge
functions are beyond the capabilities of Engineering, 16, 241-68, (1995).
currently available commercial data
generators. This indicates that proposed[6] Robbert MA,Maryanski TL,
full automation of data population and ‘Automated Test Plan Generation for
the inclusion of a degree of testing will Database Application Systems’, Proc. Of
reduce user input. 1991 ACM Symposium on Small
Systems, 100-106, (1991).

The areas for future development are as
follows: -
- Include ‘linked’ tables to represent E-

R design for a database to handle

referential data constraints.
- Additional functionality — extra data

types, use of defined data sets for

types of field names e.g. names,

towns etc.
- Make stand-alone — the present

prototype is directly attached to the

database in use.
- Automate the comparison between

the predicted error log and the actual

error log.
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ABSTRACT While we focus on testing for software verification and

The verification and validation of software through validation, we recognize that other techniques may be
dynamic testing is an area of software engineering wherecomplementary in this area (in particular software
progress towards automation has been slow. In particulainspections).

the automatic design and generation of test data remains, b
in large, a manual activity. This is despite the high
promises that the symbolic execution technique engendere
when it was first proposed as a method for automatic tes
data generation. * Automation of administrative tasks, e.g. recording of

test specifications and outcomes (useful for regression
testing), test reports generation;

¥he testing phase can be supported by automatic tools.
ﬁ'[hree main categories of automation can be distinguished
34, 2]:

In this work, we propose, and implement, a new approach
based on constraint logic programming for the automatic

generation of test data using symbolic execution. «  Automation of mechanical tasks, e.g. the running and
After reviewing the symbolic execution technique, we monitoring (for testing coverage analysis purposes) of
present our approach for the resolution of the technical the software under test within a given environment,
difficulties that have so far prevented symbolic execution capture/replay facilities allowing the automation of
from reaching its full potential. We then describe ATGen, test suites execution;

our automatic test data generator, which is based on. Ayutomation of test generation tasks, i.e. the selection
symbolic execution and uses constraint logic programming. and the actual generation of test inputs;

Keywords _ _ _ While the first two areas are being well served by
Software Testing, Automatic Test Data Generation, commercial tools—to a point that the expression
Symbolic Execution, Constraint Logic Programming ‘automatic testing is often used as a synonym for

1 INTRODUCTION automation of the tests execution only—the actual
Developing software that is correct and behaves asgeneration of test inputs is mostly still performed manually
expected is difficult. It is, at best, time consuming and (With the exception of random testing).

expensive. To address these problems we propose a generflis in fact still the case that the automatic selection and

approach using constraint logic programming and a tool for generation of test inputs remains a challenge for tool
automating the design and generation of test data forgeyelopers [34].

software verification and validation. . ) . T .
o _ This manual generation of test inputs implies that rigorous
Software verification involves checking that the software testing is laborious, time consuming, and costly. It also

respects its specification. Software verification techniquesimplies that rigorous testing is not actually widely applied.
include software inspections, formal proving of program

correctness, static analysis of programs and testing. The symbolic executiontechnique, as proposed by King
o ) [27] more than 20 years ago, has the potential to help with
Software validation involves checking that the software as {he automation of the selection and generation of test inputs

implemented meets the expectations of the customer. It 5 variety of problems. However, this potential has so far
includes software reviews and acceptance testing where the,eyer been fully realized due to many technical problems
software is exercised using tests provided by the customer 12].

The customer may also want the software to be tested for
particular circumstances for which tests have yet to be
devised.

' symbolic execution is also called symbolic evaluation



For completeness we acknowledge that new test dataassigned t&X' , Xis then assigned t¥' and finally,Y is
generation techniques with as wide a range of applicationsassigned to the symbolic expression.

as symbolic execution have been investigated, e.g. [18, 39].

Other techniques, with a smaller focus, have also beenMOSt programs are not simple sequential composition of
proposed e.g. [30, 14]. assignments. In particular, the presence of a conditional

] ] statement, such as af ...then ...else ..., splits the
It is our contention that our work places the automatic gyecution of programs into different paths. In general
gengration of test inputs. for a vqriety 'of applicationS, aStherefore, symbolic execution records for each potential
provided through symbolic execution, firmly in our grasp execution path, a traversal condition. This path traversal
as demonstrated by our tool, ATGen. condition is the logical conjunction of the Boolean

After presenting the symbolic execution technique and its conditions encountered by the path. This condition must be
many potential applications, we review the traditional satisfiable for the path to be feasible. Infeasible paths (i.e.

technical problems attached to it. We then give an overviewPaths which cannot be traversed because no input data
of previous work in this area. exists which satisfies its path traversal condition) are not

) ~uncommon and cannot be ignored.
Our general approach for the resolution of the technical

difficulties associated with symbolic execution is presented Consider the example below whevtax is a global integer
next. This general approach has been applied to a nonvariable.

triv_ial t_est generation problem resulting in ATGen,_ our tool, procedure Order(X, Y : in out integer)

which is presented and discussed before concluding. is

2 SYMBOLIC EXECUTION begin

The symbolic execution of computer programs is an if X>Y then
automatic static analysis technique that allows the Max:=X;
derivation of symbolic expressions encapsulating the entire €lse
semantics of programs. It was first introduced by King [27] Swap(X, Y);
to help with the automatic generation of test data for Max:=X
dynamic software verification. As we shall see, verification end if;

is not the only important area where symbolic execution €nd Order;

can be used. Symbolically executing the proceduf@rder we obtain
The Symbolic Execution Technique two paths:

Symbolic execution extracts ir}formation from the source | path Traversal Condition: "X > Y'

code of programs by abstracting inputs and sub-program Path Actions: Max = 'X’

parameters as symbols rather than by using actual values as
during actual program execution. For example, consider the2. Path Traversal Condition:  'Not(X > Y)'

following Ada procedure that implements the exchange of Path Actions: Max = "Y'

two integer variables: X=Y

procedure Swap(X, Y : in out integer) Y=X

is A more advanced example is provided later. We do not
T :_integer; review here, for lack of space, techniques for the actual
begin implementation of symbolic execution. Rather the reader is
T:=X; referred to a comprehensive survey of implementation
X:=Y; techniques [6]. As we shall see, the difficulties do not so
Y =T, much lie with the implementation of the symbolic

end Swap; execution technique per se but more with the exploitation

After actual execution of, sagwap(5, 10) , X will be of its potential.

equal t0o10 andY will be equal to5, i.e. the values of X  Exploitation of Symbolic Execution
and Y have been swapped. Actual execution provides aThe verification and validation of software are the main
snapshot of the semantics of the source code. areas of applications for symbolic execution.

Using symbolic execution captures exactly and entirely theFor completeness, we also mention that symbolic execution
semantics of the source code. This is performed bycan help with the following:

associating the assigned variables with a symbolic
expression made up of input variables only. Here, we’
denote symbolic expressions by delimiting them using
single quotation marks. In our example therefdrés first

software debugging, re-engineering and
comprehension [6] (e.g. by providing condensed
information about program paths);



e software optimization, simplification and Run-time errors occur when something unexpected occurs
specialization [8, 28, 6] (e.g. by helping to identify during the execution of a program (e.g. division by zero,
loop invariants which can be moved out of iterative access outside array bounds, variable overflow). They have
constructs, or by identifying unnecessary automatically the potential to crash the operating system.

inserted exception handling code [33]); There are two ways of dealing appropriately with run-time

e applications to formal specifications can also be found errors:
[32, 29, 1];

Software Verification
We can distinguish four areas of interest:

O Proving that the program is run-time error free;

O Inserting exception handling code to handle run-
time errors;

* Automatic Test Data Generation for Coverage Testing The first approach is sometimes applied to safety critical

This is the first powerful usage of symbolic execution Software where it is acknowledged that preventing run-time

historically identified [27]. It can be extended to include €rrors is better than controlling their effects [1]. This
data flow testing [5, 16]. approach falls within the remit of software proving.

Testing coverage criteria such as statement or decision! esting software that uses exception handling requires the
coverage [5] have as their objective the execution of all generation of test inputs which will trigger the run-time
statements or all decision outcomes, respectively, of theerror concerned. This can be achieved through specific path
program under test. A symbolic executor can generate thdraversal conditions generation (e.g. to ensure that the
path traversal condition of paths selected to achievedenominator in a division takes zero for value) and
complete coverage. The path traversal conditions can therfampling for test inputs generation.

be sampled to obtain a set of test inputs which, by1q achieve this, the functional requirements for a testing
construction, achieves 100% (excluding unreachable codgq| are similar to the path domain testing application
of course) coverage for the chosen testing criterion. discussed previously.

This application of symbolic execution requires the Generating test inputs to trigger run-time errors is, of

implementation of a path selection strategy, the ability t0 o rse also necessary for programs that do not deal with
detect infeasible paths and the ability to sample satisfiable,,n_time errors appropriately.

path traversal conditions to generate test inputs.

. . e Helping with Software Provin
This capability would save a lot of manual effort as well as, ping g

typically, increase the level of overall coverage achieved. Software proving is concerned with formal software
verification. Symbolic execution is usually used to generate
proof requirements involving a formal specification of the
program under consideration [22]. Use of assertions for

Using coverage testing, a particular execution path is onlyProving interesting properties of the software under
tested once using a single test. It is often necessarnygonsideration is also possible [1]. The proof requirements
however, to generate several tests for a single path in ordefre then proved, or refuted, independently using a theorem
to detect coincidental correctness [2, 12] or exercise theProver. Theorem provers typically require human

path usindextreme’values (as in boundary analysis [2]). interventions. The same approach can be used to prove the

. . i . absence of run-time errors [1].
This can be achieved through analysis of the path actions

(e.g. to detect the use of the remainder operetar and This is the traditional role of symbolic execution during
generate a constraint to distinguish its usage from theProgram proving.

modulo operatormod’) or of the definition domain of  Apgiher angle is to attempt the generation of a test input
variables and by adding constraints to the path traversalneg(,ﬂting the proof requirement [39]: if a test can be

condition to force the generation of particular values. generated the proof need not be undertaken as it is bound to

This application requires the additional ability to generate fail. Detecting instantly, at a low cost, that a proof will fail

constraints depending on the context of execution. is attractive: commonly, many of the proof requirements

) ) ) ] attempted are unprovable and time-consuming to deal with.
This extra testing has the potential to greatly increase the

likelihood that errors will be detected in the program under This is applicable to proving that a program is run-time
test. error free, as the first step should be to try to generate

. ) ) automatically a test triggering a run-time error.
e Automatic Test Data Generation for Run-Time Errors o
Testing Software Validation

Most of what we have discussed so far, under the software

¢ Automatic Test Data Generation for Path Domain
Testing



verification heading, is applicable to software validation current path.

except that the tests generat.ipn requests would Origir]ateProcedure and function calls can be handled by in-lining
from the customer. The specific requirements of software : L
the sub-program code each time it is encountered or

validation however are often overlooked. : S .

symbolically executing it once and using the results at each
For example, it would be attractive to generate tests on anvocation [12].
per scenario basis as proposed by the customer. Being abl
to answer reliably and quickly questions such‘wat
happens if such and such variables have such and suc
values and this loop is taken 14 times®uld be attractive.
The customer may also wish to execute the software unde
consideration for everyday circumstances (e.g. avoiding
extreme values) or in special operational modes (e.g.Many of the technical problems faced by symbolic
landing mode in a fly-by-wire software). executors have been discussed by Coward in [12] and by
Clarke and Richardson in [6].

Bther characteristics of structured programming languages,
r\]/vhich are difficult to deal with using symbolic execution,
are dynamic memory allocation, pointers (especially
ointer arithmetic as is allowed in the C programming
anguage) and recursion.

While the ability to generate and sample path traversal
conditions would be required as before, a new requirementlt is our view that, although the generation of symbolic
of our testing tool would also be necessary in our view. Theexpressions along a given path in a program is not without
obvious way of dealing with such test generation requeststechnical difficulties, most of the restrictions usually
using symbolic execution would be through the judicious imposed by symbolic executors on the source language that
placing of assertions in the program source code. Howevercan be handled originate from the limitations of the
this is cumbersome for large programs. In our view, a techniques used for path feasibility analysis and test data
higher level of usability, through the development of generation [26] (i.e. practical problems associated with the
dedicated Graphical User Interfaces, is necessary to unloclexploitation of the results of the symbolic execution phase).
the potential of test data generators for software validation

purposes. Practical Problems

Most symbolic executors simply generate all the syntactic
Traditional Difficulties with Symbolic Execution paths in a program [1] (with special considerations for
Here we review the problems associated with symbolic loops). It has been remarked by Coward in his review of
execution in general. We can distinguish two distinct types symbolic execution systems [11], that this way of
of difficulties: proceeding, besides wasting a lot of effort (because it is a
purely syntactic process where feasibility of the
intermediate paths is not checked during generation), may
not be practical since a program may contain more paths
« Practical difficulties with the exploitation of the that can reasonably be handled. Better, would be to

symbolic execution results; integrate a path selection strategy within the symbolic
executor to generate as few conditions as is necessary to
achieve a particular testing criterion.

e Technical difficulties with the symbolic execution
technique per se;

Technical Problems
We can list in this category some features of programming
languages that are challenging to deal with. Further, and as we have seen, to exploit fully the potential

i of the symbolic execution technique it is necessary to be
For example, array references can be problematic where thep e 1 check the feasibility of the path traversal conditions
index is a not a cqnstant but a variable—as is typlcqlly thegenerated and, for testing purposes at least, to be able to
case—as the particular array element referred to is therjanerate actual test data for feasible paths. Unfortunately,
unknown. Symbolic execution can be performed in these yq a5 highlighted in the next section, the complexity of the

cases with the generation of ambiguous array references if,ih traversal conditions generated have, to date, proved
path traversa! ‘?O”_d,'“ons [12]. T.h'e problem then is 10 {5, high to be tackled efficiently and automatically.
decide the satisfiability of the conditions generated.

- . . In our view, it is that fundamental problem that has
Loops are also difficult to deal with appropriately. Bounded pingered the wider use, and further development, of

loops can of course be unfolded as they do not create anygification and validation tools based on symbolic
new path in the program. Loops which are input variable gyecytion rather than the perceived technical problems

dependent however, can be executed any number of timeS qgitionally associated with the symbolic execution
Hence, there is the dilemma of the number of times thetechnique per se.

body of the loop should be traversed. Typically, symbolic

executors generate path traversal conditions with loopsRelated Work

executing zero, once or several times. This problemEarly research tackled the path feasibility problem using
however should be dealt with according to the testing linear programming routines and rule-based checks [12, 11,
criteria under consideration and the feasibility or not of the 36, 7].



The problem with this approach is the inflexibility of the path traversal conditions, and of paths which are not
resulting tools. It may work well for conjunctions of linear required for the fulfilment of the testing criteria under

conditions over integers, but separate techniques need to beonsideration, it is necessary to integrate the following,
used for, say, non-linear conditions over floating point traditionally separate, elements of a test data generator:

numbers. :
«  Symbolic executor;

Furthermore, path traversal conditions typically are logical
expressions over a mix of Boolean, integer, floating point
number and enumeration variables organized in arrays and . path feasibility analyzer;

records: these cannot be solved using a single resolution . ) ] )
strategy. At best, a lot of preprocessing needs to beDO|ng so would make it pOSSIble to check, dUrlng their

S ) the generation of unnecessary or infeasible paths.
Syntactic simplification rules, while of value towards the

representation of traversal conditions in a simplified form While this approach is not a new proposal [12], its
[1], are unlikely to detect many infeasible paths as such.  successful implementation has, to date, been elusive.

Using a theorem prover, as illustrated in [26, 19], may Additionally, we must also provide the means for the
allow the handling of arrays where the index is not a automatic sampling of satisfiable path traversal conditions
constant. However, while using axiomatic rules for proving SO @s to generate actual test data for the, known feasible,
that a particular set of symbolic expressions over arrays isSelected paths.

unsatlsfl_able may be Sl_JltabIe, it cannot be a_pplled to linearconstraint logic programming is the paradigm that has
expressions over, say, mtegers. Also, on the|_r own, theoremy|iowed us to realize these aspirations.

proving tools are not suited for generating test data

satisfying a particular path traversal condition. Use of Constraint Logic Programming o
As we have seen, we want to check the satisfiability of

So, while many separate techniques have been employed i gepraic expressions. l.e. given an algebraic expression,
previous attempts at determining path feg§|bll|ty, the sheeradong with the variables involved and their respective
complgxny of _most path traver_sal conditions has me_antdomains, we must show that there exists an instantiation of
that, in practice, the underlying language on which {he variables which reduces the expression to true. In
symbolic execution is applied must be simplified and that effect, an algebraic expression constrains its variables to a
the complexity of the path traversal conditions must be low particular set of values from their respective domains. If
for the approach to succeed (e.g. linear expressions ovepny of the sets are empty, the assertion is reduced to false
either integer or floating point variables but not mixed gnq is said to be unsatisfiable. Thus, an algebraic

cong;tlons where floating point and integer variables are eypression is a system of constraints over its variables.
used).

Path selector;

. . Hence, we have a Constraint Satisfaction Problem (CSP):
Therefore, the source language typically handled by testingye want to search the variable domains for solutions to a
tools based on symbolic execution is a small subset of itSfiyed finite set of constraints.

original [12] and no test data generation facility is . ) )
provided: the tool only performs path feasibility analysis on Constraint Satisfaction Problems (CSPs)

all the syntactic paths [19]. CSPs (see [17] for an informal introduction) are in general
NP complete and a simplgénerate and teststrategy,
3 OURAPPROACH where a solution candidate is first generated then tested

Our underlying approach centers on the tighter integrationagainst the system of constraints for consistency, is not
of the different sub-systems making up a test data generatofeasible. Constraint satisfaction problems have long been
based on symbolic execution, by using a constraint logiCyesearched in artificial intelligence and many heuristics for
programming language. We have two overiding concerns:efficient search techniques have been found. For example,

reducing the amount of wasted effort during generation of inear rational constraints can be solved using the well-
the symbolic expressions and enlarging the typical kown simplex method [13].

programming language subset that can be efficiently

tackled by symbolic execution. Coincidentally, we are, in TO implement the kind of solver we require, e.g. able to
effect, taking further the general ideas presented by Hamletvork with non-linear constraints over floating point
in [21] for the rapid implementation of general testing numbers and integers, we could implement these heuristics

tools. by writing a specialized program in a procedural language
. (such as C, or using an existing solving routines library).
Closer Integration Nevertheless, although the heuristics are readily available,

To avoid the generation of many paths with unsatisfiable thjs approach would still require a substantial amount of



effort and the resulting program would be hard to maintain, integers.
modify and extend. Ideally, we would like to concentrate
on the that rather than the How, i.e. we are more
interested in the problem of combining the heuristics rather X*X+Y =10
than in implementing the internal mechanism of each
individual heuristic search technique.

In Prolog the equality:

results in failure, since in Prolog equality only holds
between syntactically identical terms and is just a
The advantages of logic programming, mainly under the variable of no particular type. Using a CLP language
form of the Prolog programming language [4], over however, it is possible to code the semanticX ahdY as
procedural programming have long been recognized [21]:peing integer-like and constrain them such X + Y

the what and the how are more easily separated sincé - 10 holds. The constraint resolution mechanism will
Prolog is based on first order predicate logic and has an inyetect the constraint as non-linear and reduce it as follows:
built resolution computation mechanism. However,

Prolog's relatively poor efficiency when compared to X=X Y=Y

procedural languages has hindered its general acceptance. X*X +Y =10 is delayed

For CSPs, however, Prolog is still the language of choice.l-€. the system of constraints is satisfiable (subject to
Searches are facilitated by its in-built depth-first search consideration of the delayed constraints) and a simplified
procedure and its backtracking facilities. However, even in version is internally held. A labeling strategy must impose
this area Prolog suffers from a general lack of facilities to further constraints on eithet or Y for the satisfiability of
express complex relationships between objects (terms): théhe system of constraints to be confirmed.

semantics of objects has to be explicitly coded into a term.
This is the cause of the perceived poor mathematical
handling capabilities of Prolog when compared with its
other facilities: only instantiated mathematics can be dealt

with readily. Further, the basic in-built depth-first strategy delayed constraint t&*X = 8 _' This constraint would
tends to lead to agenerate and testpproach to most have to be delayed. The labeling strategy now attempts to

problems: specialized heuristics must be implemented toinstantiateX repeatedly without success (because failure in

During labeling, a not so efficient strategy would selct
to be sampled first. The sampling strategy would then
instantiateY with, say,2 thus awaking and simplifying the

prune the search space. this case actually occurs on the entire definition domain of
) ] . X) which induces backtracking in the traditional, logic
Constraint Logic Programming programming, manner. Eventually is instantiated to

Constraint Logic Programming (CLP), as introduced by onqiher value, say, thus reducing the constraint store to:
Jaffar and Lassez [25], reviewed by Colmerauer [10] and

discussed in [9], alleviates these shortfalls by providing X=X, ¥=1

richer data structures on which constraints can be expressed X*X =9 is delayed
and by using constraint resolution mechanisms (also knownThe labeling mechanism now attempts to awake the
as decisic_)n procedures)_to_ reduce the search space. Wh layed constraint: this can only be achieved through
th‘? deC|_S|on proce_dure IS mcomplete—_e.g. for I’".m'lme"’lrinstantiatingx. EventuallyX will be instantiated with3 or

arithmetic  constraints—the problemquc constraints are 3 and the system of constraints will be declared satisfiable
suspended, we also say delayed, until they become linear:. d1th | 3 v=1 willalsob ilabl
Non-linear arithmetic constraints can become linear &1d the sample, sa¥,= 3 ., ¥ =1 will also be available.

whenever a variable becomes instantiated (or bound). This| © Succeed, this labeling strategy has generated thousands
if the initial domain of the variables is of that order) of

can happen when other constraints are added to the syste i :
of constraints already considered or during labeling. utile assumptions.

The labeling mechanisms further constrain the system of” mMore efficient labeling strategy would recognize Was
constraints according to some strategy. It can be viewed adhe variable on which the linearity of the delayed constraint
a process to make assumptions about the system oflepends and attempt to constrain it first. Any value in the
constraints under consideration. It is a very powerful domain ofX will make the delayed constraint linear thus
mechanism and it is used to awaken delayed constraints ofllowing the constraint resolution mechanism of the
to generate a solution to an already known satisfiableunderlying solver to detect satisfiability directly. EXg=
system of constraints. -5 will awaken the delayed constraint and the solver would

. . . . directly yield:
To deal with non-linear problems, the labeling strategies vy

used are critical to the overall efficiency of the solver. A X=-5Y=-15
discussion of constraint satisfaction using CLP can be
found in [24].

We now give an example of constraint resolution involving

This latest labeling strategy is adequate as only one
assumption is made to yield a positive outcome.



It is this general approach that we have customized to beaequires additional annotations to give extra information
applicable to path traversal conditions as generated duringabout the program. This extra information can then be
symbolic execution. handled by SPARK analysis Tools (such as the SPARK
Examiner [1]) to perform various static program analysis

CLP languages are ideal for our purpose as their |n-bU|Ittalsks (such as data flow analysis [1]).

resolution mechanism removes most of the needed

development effort and still offer the flexibility of logic We however discard any SPARK annotations and only

programming. In fact, they allow the rapid development of consider the Ada constructs for our test data generation

efficient, dedicated, constraints solvers. purposes (ATGen however could easily be adapted to

) handle FDL—Functional Description  Language—

4 ATGen: AN AUTOMATIC ~ TEST DATA constructs making up the outputs of the SPARK analysis
GENERATOR tools [1])

ATGen is our prototype testing tool implemented using the '

underlying approach outlined in the previous section. ATGen handles the entire SPARK Ada subset including

Boolean, integer, floating point (represented using infinite

precision rational numbers), enumeration types, records,

multi-dimensional arrays, all loop constructs, functions and

procedures calls. Further, there are no technical reasons

particular CLP. ECLiPSe is distributed with many valuable why we may not extend the Ada subset currently handied
X S ; : . by ATGen beyond SPARK.

libraries implementing various constraint solvers (over

integers, rational numbers, sets etc.). Other similar Overall Structure

environments may well be as equally suited. ATGen is composed of a pre-parser written in C and of
roughly 4200 lines of commented Prolog code divided in
seven modules.

The particular constraint logic programming environment
used to implement ATGen is ECLiPSe [15]. ECLiPSe is a
Prolog based system that serves as a platform for
integrating various logic programming extensions, in

Current Area of Application

While it should be clear that our approach is general
enough to be applied to many structured programmingThe pre-parser transforththe SPARK code into a list of
languages for a variety of purposes we have chosen thé&rolog facts. This transformation is purely syntactical (e.g.
initial area of application to be as compelling as possible. the first letter of variables is put into upper case, labels for
conditions are automatically generated). For interest, we
nglve below the parsed version of the second loop of

quotient, our next example

Decision Testing whlle(cond(CZ, T <> D), stmts([

In decision testing [5, 2] the aim is to test all decision ass!gn(Q, Q*2),

outcomes in the program. Typical decisions are Boolean ?SS'QZ(T’ T/2)’_ h
expressions controlling the flow of execution in the |(cor_1 (CF::”;<} R). then(stmts([
program such as in conditional constructs and loops. Zzz:gQEQ Q+1))

Discounting infeasible decision outcomes [5] we aim to '

generate a test data suite achieving 100% decision D),

coverage. ])()eIS|fs(|]) else(stmts([])))

Hence, the current area of application of ATGen is the
automatic generation of test data to achieve 100% decisio
coverage of SPARK Ada programs.

Note that. the cur_rent implementation qf our path selchonThlS intermediate representation of the SPARK source code
strategy is not aimed towards producing the smallest test

set possible but towards the fastest generation of a set of compiled into ATGen as an ordinary Prolog program.

tests achieving coverage. Thus, some redundant paths mayhe symbolic execution of the program under consideration
well be generated. is directed according to the testing coverage criteria chosen
SPARK Ada and the feasibility analysis of the current subpath:

. . infeasible or redundant subpaths are immediately
SPARK Ada_[l] IS a su_bset of the Ada Programming )andoned and the system backtracks in an ordinary Prolog
language designed in particular for the development of high

intearity software. It is the most pobular Ada subset for Manner: The path traversal condition of suitable paths is
gty S ' Pop sampled to generate test data. This entire process is
safety critical software.

repeated, through backtracking, until the testing coverage
Briefly, the following Ada features are excluded from
SPARK Ada: concurrency, dynamic memory allocations,
pointers, recursion, and interrupts. The reader is referred to’ this transformation is still partially performed manually,
Barnes [1] for a complete definition of SPARK Ada. but a parser is nearing completion using a YACC-like

Formally SPARK Ada is not just a subset of Ada, as it also Parser generator.




criteria is fulfilled. Example
We reproduce, verbatim, an example given in [18] to
demonstrate the problems associated with symbolic
execution:

Below we give a rough estimate of where the development
effort was spent.

e 30% splv?ng activities._ Mostly con_cerned vyit_h procedure quotient(n: Some_Integer,
customization and extension of the solving capabilities d: Some_Integer) is
provided with ECLIPSe; - calculate quotient and

« 30% symbolic execution per se. Dealing with sub- -~ rémainder of the integer
program calls, iterative and conditional constructs, -- division of n by d, (n>0, d>0)
assignments; g: Some_Integer := 0;
r: Some_Integer :=n;
e 20% source language features manipulation. Mainly t Some Integer := d;
concerned with the data structures of the sourcepegin

language (arrays, record, enumeration types); while r >=t loop -C1
e 10% labeling. Implementing overall and data type e:];(t);pz_;
specific labeling strategies; while t /= d loop —C?
* 5% path selection strategy implementation; q:=q*2;
t:=t/2;
* 5% test report generation. In particular printing of i <=t then --C3
arrays, output domains; M——

The reader can infer from the above what effort would be ~ d:=0d+1;
involved in extending ATGen (for another language, a new end if;

coverage measure, improved labeling strategies etc.) end |90p;
- Lo -- manipulate r and q;
Characteristics and Limitations end quotient;

We list below some interesting aspects of ATGen. o ) .
The difficulties with quotient  are that both loops are

* The tests generated for coverage testing are designeghput variable dependent and that the second loop must be
not to generate run-time errors (including avoiding executed exactly the same number of times as the first loop
internal overflow of expressions); was for the path under consideration to be actually feasible.

Further, the path traversal conditions generated involve

e Using ATGen, actual test execution becomes : ) )
ghon-linear arithmetic.

unnecessary since the actual test output is provide

along side the test inputs. However, it may still be A typical ATGen output for the procedumguotient

necessary, to comply with the independent verification ysing the decision coverage testing criteria is given below.
requirement of safety critical systems for example, to

actually execute the test generated; Path:C1 false, C2 false

. ) ~ Test DataD = 10084, N = -20016
+ Annotation of the SPARK source code is not needed; Ttaqt ResultT = 10084, R = -20016, Q = 0

¢ ATGen can be used for integration testing purposesp,in-c1 true C1 true. C1 false. C2 true
[23] which is maybe the area where the manual designc3 yue C2 true. C3 false. C2. false

of test data is the most difficult; Test DataD = 5836, N = 12905

« ATGen itself need not be of high integrity: the actual Test ResultT = 5836, R =1233,Q =2
Ieve_l of code coyerage achieved can be checked usingy o make several remarks about this result:
a third party tool;
e The above result is generated in under 1.5 seconds on

¢ Sometimes path feasibility will be too time consuming average using a 450MHz Pentium 11l based machine:

to infer (mainly when the path traversal condition
involves complex non-linear relations between floating « ATGen is non-deterministic: the actual paths and test
point variables). Better heuristics for labeling and data generated may differ on subsequent runs;

advances in CLP languages in general should reduce
this problem in the future. Currently ATGen in such °
situations issues a warning message indicating which
path has been considered infeasible by default;

More information, than we have space here for, per
path is available (such as the actual path traversal
condition);

e The second path generated actually makes the first one



redundant for decision coverage purposes; labeling strategies including moved based heuristics such
as Hill climbing, Simulated Annealing and Tabu search

[15, 37].

6 SUMMARY
ATGen automatically generates test data for total decision
coverage of SPARK Ada programs.

e The path traversal condition for the second pattNis:
>=D and N >= D*2 and not(N >= D*2*2)
and D*2*2 /= D and D*2*2/2 <= N and
D*2*2/2 <> D and not(D*2*2/2/2 <= N -
D*2*2/2) and not(D*2*2/2/2 <> D)

5 FUTURE WORK
Below are our plans for future work on ATGen.

It implements our general approach for solving the
traditional problems associated with the symbolic execution

i . .0 technique.
Demonstrating Practicality

We must better demonstrate the practicality of ATGen for Our approach is centered on tighter integration of the
real world testing applications. Therefore, while we need to various components making up a test data generator using
evaluate ATGen using automatically generated code (as inconstraint logic programming. This use of constraint logic
[18]), our main motivation should be to seek actively real programming is, to our knowledge, unique to our work.

world software testing problems in the best engineeringyye have presented our plans for future work and are
research tradition [35]. confident that ATGen will be successfully applied on real
Increasing Usability world software testing problems in the near future.

If the potential of symbolic execution is to be realized, ACKNOWLEDGEMENTS
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Abstract

This paper considers ways in which pro-
gram analysis and test hypotheses com-
plement, focusing on one particular ex-
ample: the uniformity hypothesis. Con-
ditioned slicing can be used to either
provide confidence in the uniformity hy-
pothesis, identify faults, or suggesting re-
finements to the hypothesis. The exis-
tence of a uniformity hypothesis assists
in the production of small conditioned
slices which might then be analysed fur-
ther.  keywords: Program verification,
test hypotheses, the uniformity hypoth-
esis, program analysis, conditioned pro-
gram slicing.

1 Introduction

Most approaches to program verifica-
tion can be categorised as one of dy-
namic testing and program analysis. Dy-
namic testing involves exploring the be-
haviour of the implementation under test
(IUT) when given particular input val-
ues. Within the verification context,
program analysis involves studying the
source code of the IUT in order to derive
information that might either increase
the confidence in the correctness of the
IUT or detect faults in the IUT.

In general, it is not possible to produce
a finite test set that is guaranteed to de-
termine correctness. There are, however,
techniques that generate tests that are
guaranteed to determine correctness as
long as the IUT satisfies certain condi-
tions. These conditions have been called
test hypotheses ([11]) and design for test
conditions ([19]). Section 2 discusses test

hypotheses. Testing might then be seen
as a process of choosing an appropriate
set of test hypotheses and then generat-
ing a corresponding test set.

If the hypotheses do not hold, the cor-
responding test set may be ineffective
and inefficient. Thus, it is important to
use test hypotheses that hold.

Previous work has largely focussed on
introducing new hypotheses and gener-
ating tests in the presence of hypothe-
ses ([12, 8, 31, 32, 9, 27, 5, 11, 17]).
This paper instead concentrates upon
semi-automated techniques for establish-
ing that such hypotheses do hold. Specif-
ically the relationship between the uni-
formity hypothesis and program analy-
sis, through the use of conditioned slic-
ing, is described. Slicing shall be briefly
reviewed in Section 3.

Sections 4 and 5 will discuss the fol-
lowing ways in which this relationship
may be used.

1. An instance of the uniformity hy-
pothesis, which represents expert
knowledge about the IUT, might be
used to simplify program analysis.

2. Program analysis might be used to
either provide confidence in, refute
or refine proposed test hypotheses.

It will thus be demonstrated that there
exists a symbiotic relationship between
program analysis and test hypotheses.

2 Test hypotheses

Suppose [ is to be tested against a spec-
ification M with input domain D. It
is normal to assume that I accepts the



same class of inputs as M, though an er-
ror may result for some of these input
values. Without any further knowledge
about I there is, in general, no finite test
set that determines correctness.

Fortunately this does not represent the
normal scenario in testing. The tester
has some expert knowledge about I and
I is not, in general, merely a black box:
it is often possible to examine the code
used to produce I. There is thus fur-
ther information about I that may be
utilised in test generation. This infor-
mation might be expressed as properties
of I called test hypotheses.

Suppose that F' denotes the set of pos-
sible behaviours of the IUT. F' is often
called a Fault Model ([22]). Suppose, fur-
ther, that the current set of hypotheses is
H and Fy denotes the set of behaviours,
from F', that are consistent with H. Let
I' < M denote that I' conforms to M
and I' <7 M denote that the I’ con-
forms to M on T C D. Naturally, the no-
tion of conformance used depends upon
the specification language. The following
defines what it means for a test set T' to
be guaranteed to determine correctness
under H.

Definition 1 Test set T is complete
with respect to H if and only if VI' €
FH.I, <M < r <r M.

Two related notions, of a test being
unbiased and valid, have been described
([11]). A test is walid if it rejects all
faulty implementations that satisfy the
test hypotheses. A test is unbiased if
it cannot reject a conforming implemen-
tation that satisfies the test hypotheses.
Then a test is complete if and only if it
is unbiased and valid.

Clearly, the exhaustive test set D is
complete with respect to every hypoth-
esis H. Exhaustive testing is, how-
ever, rarely practical. Given M and
I, there are the following, inter-related,
challenges.

1. To devise some set H of test hy-
potheses, that I is likely to satisfy,
such that there is a corresponding
feasible complete test set.

2. To determine whether I satisfies H.

3. To generate a complete test set for
I with respect to H.

The development of an appropriate set
of hypotheses can proceed via refinement
([11]). Some minimal hypothesis is pro-
duced and this is refined through a num-
ber of steps. The minimal hypothesis
might, for example, be that I is equiva-
lent to some unknown element from fault
model F' or simply that the input and
output domains for I are the same as
those for M. Each refinement strength-
ens the test hypotheses and thus, poten-
tially, allows a smaller complete test set.

Many test generation techniques are
based around partitioning the input
domain D into a finite set DM =
{D1,...,Dy} of subdomains such that,
according to M, all elements in a sub-
domain should be processed in the same
way ([12, 31, 32,9, 27, 11, 17]). The uni-
formity hypothesis says that if the input
of one value in some D; € DM leads to a
failure then all values in D; lead to fail-
ures.

It is to be expected that there is some
(unknown) partition D!, of the input
domain, such that the behaviour of I
is uniform on each subdomain of DI.
The uniformity hypothesis is thus based
upon the assumption that DM and D’
are similar. If the uniformity hypothesis
holds it is sufficient to choose one value
from each D; € DM. However, the test
for some D; € DM is normally comple-
mented by tests around the boundaries
of D; ([32, 9]) which are expected to find
any small errors in the boundaries.

It has been noted ([29]) that if the
partitions D™ and D! were known, the
behaviours of I and M could be com-
pared on each subdomain from D™ =
{D;ND; | D; € DM D, € D'}. While
we do not consider the generation of D,
this idea from ([29]) provided the inspi-
ration for much of the work contained in
this paper.



3 Program slicing and
symbolic evaluation

Program slicing is the process of taking
a program I and some slicing criterion
(V,n) (variable set V and node n) and
removing all parts of I that do not af-
fect the value, at node n, of any variable
in V. Much work has focussed on the
technical problems associated with slic-
ing programs in the presence of proce-
dures [20, 28], pointers [2, 24, 25] and
jumps [3, 7, 14, 1]. This paper uses only
end slicing, in which the end of the pro-
gram is the point of interest ([23]). Thus,
throughout this paper the slicing crite-
rion is simply a set of variables.

Program slicing was initially intro-
duced as a way of assisting debugging
([30, 26]). For this application it is im-
portant that the only simplification tool
available to slicing algorithms is state-
ment deletion. For a number of other
applications, such as mutation testing
([18]) and program comprehension ([13,
15]), this restriction to statement dele-
tion is unhelpful. In such cases Amor-
phous Slicing, which allows the applica-
tion of any transformations that preserve
the semantics of interest, leads to im-
proved simplification ([13, 16, 4]).

In slicing it is possible to place a con-
dition C' on the input values. Then any
statement that cannot affect the values
of the variables in V' at n, given that the
input satisfies C', may be removed. This
is called conditioned slicing ([6, 10]). In
the amorphous version of conditioned
slicing any transformation that preserves
the effect of the original program upon
the slicing criterion is valid.

Given a program I and condition C,
Sc(I) shall denote the (possibly amor-
phous) conditioned end slice of I (in
which all variables are of interest) for
condition C. Similarly, given subdomain
D' C D, Sp/(I) shall denote the condi-
tioned slice in which the input is con-
strained to D’. Thus Sp/(I) denotes
Sc(I) where C(z) is the condition = €
D'

Symbolic evaluation is the process of
describing the final values of the vari-

ables in a program in terms of the ini-
tial values of the variables. Since pro-
grams normally have control-flow con-
structs, the result of applying symbolic
evaluation to a program will usually lead
to a number of symbolic values, each
with a precondition.

4 Uniformity can help
program analysis

This section describes a way in which
the existence of a uniformity hypothe-
ses may assist program analysis. This is
achieved through using the information
represented by the uniformity hypothe-
sis. It thus introduces the possibility of
using standard testing approaches, that
generate a uniformity hypothesis, to as-
sist program analysis.

Suppose subdomain D' of D has been
chosen and all of the values in D' are pro-
cessed in the same way by I. Then the
conditioned slice of I on the subdomain
D’ should be relatively simple. Thus, if
D! were known, this would suggest an
approach to program analysis: slice on
the subdomains of D! and analyse these
slices.

While D! is not known, it is possible
to slice using the partition DM, forming
the set S(I, DM) = {Sp,(I) | D; € DM}
of conditioned slices. If the uniformity
hypothesis holds the slices in S(I, DM)
should be relatively small. This might
help solve one of the challenges of con-
ditioned slicing: finding conditions that
lead to small but useful slices.

Consider the program analysis prob-
lem of producing a proof of correctness.
Then, I conforms to M if and only if
for all D; € DM, I conforms to M on
D;. Thus, in order to prove that I con-
forms to M it is sufficient to prove that
each Sp,(I) conforms to M on the cor-
responding D;. It is then sufficient to
consider, for each D; € DM, I and M
restricted to D;.

The uniformity hypothesis is based on
the behaviour of M being relatively sim-
ple on each D;. If the uniformity hy-
pothesis holds, the Sp,(I) should also



be relatively simple. Thus, if the uni-
formity hypothesis holds, the proof of
correctness has been broken down into
a number of relatively simple proofs.
Symbolic evaluation might be applied
to each Sp,(I), producing an expres-
sion that can more easily be handled
by an automated theorem-prover. Nat-
urally, if the partition D! defined by I
were known, slicing would be applied on
DM — {Dz N D]’ | D; € DM,D]' € DI}.
The approach outlined in ([29]) might
then be used.

Consider now an implementation I®
that is intended to solve the triangle
problem. It thus takes three integers =z,
y and z and should return:

1. ‘equilateral’ if x=y and y=z;

2. ‘isosceles’ if two of x, y, and z are
the same but the third is different;

3. ‘scalene’ if x, y, and z are all differ-
ent.

The tester might analyse this specifi-
cation and produce the following condi-
tions:

Ci(z,y,2) =Sxc=yANy==z
02(1’,:11,2)5
(z=y)V(E=2)Vy=2)
AN(z=yAy=2)
Cs(z,y,2) Sx#yNy#zhae#z

Suppose that the computation con-
tained in T2 is the code shown below.

if (x==y && y==2z)

r = "equilateral";
if (x==y) r = "isosceles";
if (x==z) r = "isosceles";
if (y==z) r = "isosceles';
if (x!'=y && y'!'=z && x!=2z)
r = "scalene";

printf ("The triangle is %s \n",r);

Suppose that I2 is sliced on conditions
C1, Cs and C3. The initial step in pro-
ducing a conditioned slice, of I*, for Cs
might give:

if (x!=y && y'!'=z && x!=2)
r = "scalene";

This reduces to:
r = "scalene";
Similarly, the first step in the process

of applying conditioned slicing with Cs
might give:

if (x==y) r = "isosceles";
if (x==z) r = "isosceles";
if (y==z) r = "isosceles";

This reduces to:

r = "isosceles";

Suppose conditioned slicing is applied
with C7. Then any effect of the first
three lines is killed by the fourth line.
Conditioned slicing might initially pro-
duce:

if (y==z) r = "isosceles";

Again, this may be further reduced,
giving:

r = "isosceles";

The behaviour on each subdomain is
quite simple. In fact, in each case it
is constant. The information provided
by the uniformity hypothesis has thus
allowed the generation of small condi-
tioned slices. The existence of these
conditioned slices allows the production
of simple proofs of correctness, for the
subdomains where the behaviour is cor-
rect, and the identification of counter-
examples where the behaviour is not cor-
rect. In this case it is clear that the be-
haviour on Cy and Cj is correct but that
the behaviour on C] is faulty.

It is worth noting that the production
of such simple slices has lent weight to
the uniformity hypothesis. Thus, if pro-
ducing a proof of correctness were not
feasible for some subdomain, test derived
using the hypothesis might be used in-
stead.



5 Program analysis can
help when using uni-
formity hypotheses

This section describes ways in which pro-
gram analysis assists a tester when con-
sidering using the uniformity hypothesis.
These approaches are again based upon
the conditioned end slices of I, contained
in S(I,D™), produced by slicing I on
the subdomains of the partition DM

If a slice I' = Sp,(I) is unexpectedly
complex, this might indicate that I takes
on more than one behaviour on D;. This
might occur either because this subdo-
main should be split further or because
a boundary is wrong. Then we might
either further analyse this slice or test
more thoroughly in D;.

Let Symb(I, D;) denote the result of
applying symbolic evaluation to Sp,(I),
D; € DM. Then Symb(I,D;) is a
set of pairs, each pair (p,f) consist-
ing of a precondition p and a behaviour
f. Suppose Symb(I,D;) has been pro-
duced and it contains more than one
behaviour with separate preconditions.
These preconditions suggest a refinement,
of DM: the subdomain should be parti-
tioned into {{z € D; | p(x)} | 3f.(p, f) €
Symb(I, D;)}. The conditioned slices on
each of these subdomains may now be
produced and these should be relatively
simple.

Suppose a slice Sp, (I) € S(I,DM) is
simple and Symb(I, D;) contains one be-
haviour only. This provides some ini-
tial confidence in the behaviour of I be-
ing uniform on D;. It might also be
possible to further analyse the relation-
ship between the behaviour of Sp, (I) or
Symb(I,D;) and that of M on D;. This
analysis might, for example, involve a
proof of correctness. Alternatively, it
might involve determining the type of
function applied. Where the form of the
behaviours of M and I on D; is known, it
may be possible to devise a test set that
determines correctness on D; ([21]), thus
overcoming the problem of coincidental
correctness.

Consider a system designed to return
the sale price of a purchase of rice and

lentils. Suppose x denotes the amount
of lentils being purchased and y denotes
the amount of rice being purchased. The
price of rice is 2 and the price of lentils
is 1. There are discounts for bulk pur-
chases: if the amount of lentils being
purchases is greater than or equal to 50
there is a five percent discount and if the
total price (without discount) is greater
than or equal to 1000 there is a ten per-
cent discount. The discounts are cumu-
lative. Suppose program IP, contain-
ing the following code that performs the
computation, has been produced.

if (x >= 50.0) pl =
else pl = 1.0;

if ((2.0%x+y) >1000.0) p2 = 0.9;
else p2 = 1.0;

c = pl*p2*(2.0%x+y);

0.95;

There are two basic conditions, > 50
and y > 1000, to consider. This leads to
the following four conditions.

z <50 A (22 +y) < 1000

z <50 A (22 +y) > 1000

(
z>50 A (22 +y) < 1000
(

<
z > 50 A (2z +y) > 1000

Consider the second condition,
C(z,y) = = < 50 A (22 + y) > 1000.
Then the corresponding conditioned
slice of IP is

if (x >= 50.0) pl =
else pl = 1.0;

if ((2.0*x+y) >1000.0) p2 = 0.9;
else p2 = 1.0;

c = pl*p2*(2.0*x+y);

0.95;

This can be further reduced to:

pl = 1.0;

if ((2.0%x+y) >1000.0) p2 = 0.9;
else p2 = 1.0;

c = pl*p2*(2.0%x+y);

and then, using amorphous slicing:
if ((2.0%x+y) >1000.0) p2 = 0.9;

else p2 = 1.0;
c = p2*(2.0*x+y);



This cannot be simplified any further.
Symbolic evaluation may now be ap-
plied, leading to the following precondi-
tion/function pairs:

(((2z + y) > 1000.0),c = 0.9 % (2z +y))

(((2z + y) < 1000.0),c= (2z +y))

The second precondition can be sim-
plified to 2z + y = 1000. This analy-
sis suggests dividing the subdomain, de-
fined by the precondition C(z,y) = x <
50A (2z +y) > 1000, into C (z,y) =z <
50 A (22 +y) > 1000 and Ca(z,y) =z <
50A(2a+y) = 1000. Any test case taken
from the second of these subdomains will
lead to a failure.

6 Future Work

This paper has considered ways in which
program analysis and test generation
complement one another. In particu-
lar, a relationship between the unifor-
mity hypothesis and conditioned slicing
is explored. There is, however, a gen-
eral principle contained in this work: in-
formation contained in test hypotheses
may assist when analysing a program
and program analysis may assist when
using test hypotheses. This general ap-
proach may extend to other types of test
hypotheses and forms of program analy-
sis.

The potential role of program analy-
sis, when using test hypotheses, suggests
the challenge of devising test hypotheses
that

1. are likely to hold;

2. lead to feasible tests that are easy
to generate;

3. are relatively easy to verify using
program analysis.

Other test hypotheses might represent
information that can assist in program
analysis. This suggests the investigation
of information contained in test hypothe-
ses, information that might assist partic-
ular forms of program analysis, and any
relationships between these types of in-
formation.

7 Conclusions

Many test techniques make assumptions,
often called test hypotheses, about the
implementation under test. These allow
stronger statements to be made about
the effectiveness of testing if the test hy-
potheses hold. However, if the hypothe-
ses do not hold then the tests generated
may have little value.

Program analysis is capable of provid-
ing general information about implemen-
tations. Often, however, program com-
plexity limits the use and effectiveness of
program analysis.

This paper has considered the rela-
tionship between test hypotheses and
program analysis. Within this it has
concentrated on the uniformity hypoth-
esis. Program analysis may provide con-
fidence in or refute the test hypotheses
or may suggest refinements to the hy-
potheses. The information provided by
the existence of the uniformity hypothe-
sis can be used to simplify program anal-
ysis through the production of small con-
ditioned slices.
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Abstract

While heavyweight formal methods have
shown much promise in academia and
remarkable success in industrial hardware
projects, they are rarely used in industrial
software projects. There are many reasons for
this [DillRusby96, Hall96, HollowayButler96],
but we believe one of the most important is the
lack of a realistic adoption path between
current development techniques and more
formal approaches. Our research seeks to
provide a few of the steps along that path. Our
experience so far with LCLint [EGHT94,
Evans96] indicates that lightweight static
checking tools may provide an effective way to
introduce formal methods into industrial
environments.

Background

There is a huge gap between the amount of
effort and expertise required to use
traditional development tools (such as
compilers, integrated development
environments, and test scripts) and formal
techniques such &specifications, model
checking, and program verification. On

the other hand, a large class of common
programming errors can be detected using
simpler techniques. Our research explores
what can be done with minimal
programmer effort, without requiring
substantial changes to traditional
development processes, using a tool that
requires no user interaction and runs about
as fast as a typical compiler.

We have developed LCLint, a tool for
statically checking C programs. LCLint
provides a first step towards adoption of
formal techniques and mechanical
analysis. If minimal effort is invested
adding annotations to programs, LCLint
can perform stronger checks than can be
done by any compiler or standard lint.
Adding these annotations is the first step
on the path to using formal analysis
techniques. LCLint checking ensures that
there is a clear and commensurate payoff
for any effort spent adding annotations.

Some of the problems that can be detected
by LCLint include: violations of
information hiding; inconsistent
modifications of caller-visible state;
inconsistent uses of global variables;
memory management errors including
uses of dead storage and memory leaks;
and undefined program behavior. LCLint
checking is done using simple dataflow
analyses. This means the checking is as
fast as a compiler, and LCLint can easily
be introduced into standard development
cycles.

As one would expect, LCLint's
performance and usability goals require
certain compromises to be made regarding
the checking. In particular, we believe

that it is reasonable to sacrifice soundness
and completeness towards these goals (see
[Evans96] for a more complete argument).
While this would not be acceptable in
many environments, it is a desirable
tradeoff in a typical industrial

development environment where efficient
detection of program bugs is the

overriding goal. LCLint has been in active
use for more than five years, and has been
used by thousands of programmers in both
industry and academia.

Current Directions

Our current work focuses on extending
this approach in two directions: enhancing
the functionality of LCLint by adding
support for user-defined annotations
without relaxing the usability and
efficiency requirements, and providing the
next step toward heavyweight formal
methods by introducing more expressive
annotations and automated run-time
checking.

User-defined Annotations. Currently,
LCLint users are limited to a pre-defined
set of annotations. This works well as
long as their programming style is
consistent with the methodology supported



by LCLint (e.g., abstract data types
implemented by separate modules,
pointers used in a stylized way), but is
problematic if one is checking a program
that does not adhere to this methodology.
For example, LCLint provides annotations
for checking storage that is managed using
reference counting. An annotation is used
to denote an integer field of a structure as
the reference count, and LCLint will report
inconsistencies if new pointers to the
structure are created without increasing the
reference count, or if the storage
associated with the referenced object is not
deallocated when the reference count
reaches zero. If a program implements
reference counting in some other way (for
example, by keeping the reference counts
in a separate lookup table), however,
LCLint provides no relevant annotations

or checking. More generally, applications
often have application-specific constraints
that should be checked statically.
Programmers should be able to define
annotations that express these decisions,
and use LCLint to verify that the code is
consistent with their constraints.

We are investigating extensions to LCLint
that address this need by supporting user-
defined annotations. Programmers will be
able to invent new annotations, express
syntactic constrains on their usage, and
define checking associated with the
annotation.

Annotations introduce state that is
associated with both declarations and
intermediate expressions along symbolic
execution paths. The meaning of an
annotation is defined by semantic rules
similar to typing judgments, except they
may describe more flexible constraints and
transitions than is usually done with typing
judgments. We are defining a general
meta-annotation language that can define a
class of annotations in a simple and
general way. Meta-annotations define
constraints and transition functions when
storage is assigned, passed as parameters,
returned from a function, and when control
enters or exits a block or function.

We are currently experimenting with
annotations for detecting buffer overflow
errors. Annotations and checking needed

to statically detect buffer overflows are
more complex than previous LCLint
annotations. They may depend on
numeric constraints as well as establishing
relationships between more than one
reference. For example, one annotation
expresses that the allocated size of storage
referenced by a structure field is equal to
the value of an integral field in the same
structure. These annotations will provide
a good basis for determining the required
scope of the meta-annotation language, as
well as for experimenting with the
expressive requirements of the meta-
annotation language.

Towards Heavyweight Formal
Techniques. The performance and
usability requirements of LCLint
inherently limit the kinds of checking that
can be done as well as the claims that can
be made about a checked program. We
can consider overcoming these limitations
by relaxing these requirements. Typical
users will start by using the lightweight
version of LCLint, but as they become
more familiar with formal techniques will
be willing to invest the effort required to
use heavier-weight technigues. Providing
a straightforward and effective transition
path from lightweight to heavyweight
formal techniques is a major goal of this
work.

One approach would be to require more
complete specifications and use theorem-
proving technology to perform more
complex checking. This is similar to what
is done by the Extended Static Checking
(ESC) project at Compag SRC
[Detlefs98]. ESC uses a theorem proving
technology, which enables it to detect a
larger class of errors than can be done by
the simple dataflow analyses done by
LCLint, but means that the analysis is
several orders slower and the size of
programs that can be analyzed is severely
limited. As programmers develop more
complex specifications, they would be
spending more time writing specifications,
and checking would slow down. There
would need to be several gradual transition
steps between lightweight annotations
with dataflow analyses, and full formal
specifications with interactive theorem
proving.



Another approach would be to use a
combination of static and run-time
checking. If LCLint is not able to prove
statically that a specified property holds, it
could insert run-time checks to ensure the
property holds at run-time. This has the
considerable disadvantage that an error
may still occur at run-time, but would
allow more complex properties to be
guaranteed without requiring the user
expertise and effort typically required of a
program verification system.

Our experience using Naccio to transform
programs to enforce a safety policy
described using a general, high-level
language [EvansTwyman99, Evans99]
offers a possible approach to automatically
inserting run-time checking in programs.
Related approaches include the Assertion
Definition Language (ADL) created by
Sun Microsystems, X/Open and the
Information-technology Promotion
Agency (an agency of Japan’s MITI)
[Sankar93, Obayashi98] and Anna’s
Annotation Transformer [Luckham90].
Both tools generate run-time assertions
from specifications. We believe a
combination of run-time and static
checking that builds on a lightweight base
is a promising way to introduce
heavyweight formal methods into
industrial environments.

Avalilability

More information on LCLint and source code
and binary releases is available at
http://Iclint.cs.virginia.edu.
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Abstract

Understanding program dependencies in a computer
program is essential for many software engineering tasks
such as testing, debugging, reverse engineering, and
maintenance. In this paper, we present a approach to
dependence analysis of Java bytecode, and discuss some
applications of our techunique in Java bytecode slicing,
understanding, and testing.
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1 Introduction

Java is a new object-oriented programiming language
and has achieved widespread acceptance because it em-
phasizes portability. In Java, programs are being com-
piled into a portable binary format call bytecode. Ev-
ery class is represented by a single class file containing
class related data and bytecode instructions®. These
files are loaded dynamically into an interpreter, i.e., the
Java Virtual Machine (JVM) [14] and executed. Re-
cently, more and more Java applications are routinely
transmitted over the internet as compressed class file
archives (l.e., zip files and jar files). A typical example
of this situation consists of downloading a web page that
contains one or more applets. However, this situation
leads to some problems. First, instead of class files, the
source code of an application usually unavailable for the
user. So when you download a program and run it, if
there is some defect with it, you need to report the bug
to the software developers and possibly pay for a new
version of the bug-free software. However, if the de-
velopers are not available to support this software (i.e.,
they do not want to support the software anymore, or
they are out of business), the user is the only one that
can make change(s). Second, a bytecode program can

*Throughout this paper, we use the term bytecode program to
refer to the program generated by the compilation process; i.e., a
machine-independent program written in JVM bytecode instruc-
tions, and use the term bytecode method to refer to the method
that is written in JVM bytecode instructions and contained in a
bytecode program. We also use the term Java bytecode to refer
to bytecode programs as a whole.

have bugs since the methods used for Java software test-
ing do not necessarily remove all possible bugs from its
source program. At these cases, if we have some tools
that can be used to support bytecode understanding,
testing, and debugging, they can be greatly helpful for
a programiner, a maintainer, and a manager.

One way to support to develop such kind of tools is pro-
gram dependence analysis technique. Program depen-
dencies are dependence relationships holding between
program elements in a program that are implicitly de-
termined by the control flows and data flows in the pro-
gram. Intuitively, if the computation of a statement
directly or indirectly affects the computation of another
statement in a program, there might exist some pro-
gram dependence between the statements. Dependence
analysis is the process to determine the program’s de-
pendencies by analyzing control flows and data flows in
the program.

Many compiler optimizations and program analysis and
testing techniques rely on program dependence infor-
mation, which is topically represented by a dependence-
based representation, for example, a program depen-
dence graph (PDG) [7, 12]. The PDG, although orig-
inally proposed for compiler optimizations, has been
used for performing program slicing and for various
software engineering tasks such as program debugging,
testing, maintenance, and complexity measurements
[2, 3, 5, 10, 16, 17]. For example, program slicing, a de-
composition technique that extracts program elements
related to a particular computation, is greatly benefit
from a PDG on which the slicing problem can be re-
duced to a vertex reachability problem [16] that is much
simpler than its original algorithm [18].

Dependence analysis was originally focused on proce-
dural programs. Recently, as object-oriented software
become popular, researchers have applied dependence
analysis to object-oriented programs to represent vari-
ous object-oriented features such as classes and objects,
class inheritance, polymorphism and dynamic binding
[4, 11, 13, 15], and concurrency [19, 20]. (for detailed
discussions, see related work section).

However, previous work on dependence analysis has



mainly focused on programs written in high-level pro-
gramming languages, rather than programs in low-level
programming languages such as Java bytecode. Al-
though there are several dependence analysis techniques
for binary executables on different operating systems
and machine architectures [6, 8, 9], the existing depen-
dence analysis techniques can not be applied to Java
bytecode straightforwardly due to the specific features
of JVM. In order to perform dependence analysis on
Java bytecode, we must extend existing dependence
analysis techniques for adapting Java bytecode.

In this paper we propose a dependence analysis tech-
nique for Java bytecode. To this end, we first identify
and define various types of primary dependencies in a
bytecode program at the intraprocedural level, then we
discuss some applications of our technique such as Java
bytecode slicing, understanding, and testing. In addi-
tion to these applications, we believe that the depen-
dence analysis technique presented in this paper can also
be used as an underlying base to develop other software
engineering tools for Java bytecode to aid debugging,
reengineering, and reverse engineering.

The rest of the paper is organized as follows. Section
2 briefly introduces the Java virtual machine. Section
3 considers the dependence analysis of Java bytecode.
Section 4 discusses some applications of the dependence
analysis technique. Concluding remarks are given in
Section 5.

2 The Java Virtual Machine

The Java Virtual Machine (JVM) is a stack-based vir-
tual machine that has been designed to support the Java
programming language [1]. The input of the JVM con-
sists of platform-independent class files. Each class file
is binary file that contains information about the fields
and methods of one particular class, a constant pool (a
kind of symbol-table), as well as the actual bytecode for
each method.

Each JVM instruction consists of a one-byte opcode
that defines a particular operation, followed by zero or
more type operands that define the data for the op-
eration. For example, iustruction ’sipush 500’ (push
constant 500 on the stack) is represented by the bytes
17,1,and 244.

For most JVM opcodes, the number of correspond-
ing operands is fixed, whereas for the other opcodes
(Lookupswitch, tableswitch, and wide) this number
can be easily determined from the bytecode context.
Consequently, once the offset into a class file and the
length for the bytecode of a certain method have been
determined, it is straightforward to parse the bytecode
instructions of this method.

At runtime, the JVM fetches an opcode and correspond-

ing operands, executes the corresponding action, and
then continues with the next instruction. At the JVM-
level, operations are performed on the abstract notion
of words [14] : words have a platform-specific size, but
two words can contain values of type long and double,
whereas one word can contain values of all other types.
During execution of bytecode, three exceptional situa-
tions may arise:

e The JVM throws an instance of a subclass of
VirtualMachineError in case an internal error or
resource limitation prevents further execution.

e An exception is thrown ezplicitly by the instruction
athrow.

e An exception is thrown implicitly by a JVM in-
struction.

Example. Figure 1 shows a simple Java class Test and
its corresponding bytecode instructions.

3 Dependence Analysis

To perform dependence analysis on bytecode methods,
it is necessary to identify all primary dependencies in a
bytecode method. In this section, we present two types
of primary intraprocedural dependencies in a bytecode
method. Intraprocedural dependencies are related to
dependencies in a single bytecode method.

3.1 Background

We give some definitions that are necessary for for-
mally defining intraprocedural dependencies in a byte-
code method from a graphical viewpoint.

Definition 3.1 A digraph s an ordered pair (V,A),
where V' is a finite set of elements called vertices, and
A is a finite set of elements of the Cartesian product
V x V, called arcs, i.e., A CV xV s a binary relation
on V. For any arc (v1,v2) € A, v1 is called the initial
vertex of the arc and said to be adjacent to vy, and vy s
called terminal vertex of the arc and said to be adjacent
from vy. A predecessor of a vertex v is a vertex adja-
cent to v, and a successor of v 18 @ vertex adjacent from
v. The in-degree of vertex v, denoted by in-degree(v),
s the number of predecessors of v, and the out-degree
of a vertex v, denoted by out-degree(v), is the number
of successors of v. A simple digraph is a digraph(V, A)
such that no (v,v) € A for anyv € V.

Definition 3.2 4 path in a digraph (V,A) is a se-
quence of arcs (a1,ay,...,ax) such that the terminal
vertex of a; s the nitial vertex of ;4 for 1 <i<k-1,
where a; € A(1 <1 < k), and k(k > 1) is called the
length of the path. If the initeal vertex of aq is vy and



class Test
int array[];
int Test() {
int i =0, j =0;
try {
while (i < 100) { j avac
i =i +1;
jo=1j +array[i];
}
}
catch(Exception e) { return 0; }
finally { a=null; }
return j;
}
}

0 iconst_0 29: pop

1. istore_1 30: iconst_0

2: iconst_0 31: istore_3

3. istore_2 32: jsr [label _51]

4: goto [label_200 TTTommooooommmesesoes
_________________________ 35: iload_3

7: iload_1 36: ireturn

8 iconst_1  TTomTommmommsmmssoeees
9: iadd 37: jsr [label _51]

10: istore.1  ToTTommmmsmomsmmooeees
11: iload_2 40: goto [l abel _60]
12: aload O  TTTTmmmmmmsmomsmomsees

43: astore tenp_4
45: jsr [label _51]

13: getfield [Test.array]

16: iload .2 ToTTTTTTmTmmmmTmomoos
17: ial oad 48: aload tenp_4
_________________________ 50: athrow

18: iadd  mmmmmmmeemmmmomeoooo-e
19: istore_2 51: astore tenp_5

20: iload_1 53: al oad_0

21: bipush 100 54: acon»stinm |

23: if_icmplt [label 7] 55: putfield [Test.arr
26: goto [label _37] 58: ret tenp_5

60: iload_2
61: ireturn

Figure 1: A simple bytecode method.

the terminal vertex of a; is vy, then the path is called a
path from vy to vp.

Definition 3.3 A countrol flow graph (CFG) of a byte-
code method M 1s a 4-tuple Gopq = (V, A, 5,T), where
(V, A) is a simple digraph such that V' is a set of vertices
representing bytecode instructions in M, and A CV xV
1s a set of arcs which represent possible flow of con-
trol between vertices tn M. s € V 1s a unique vertex,
called start vertex which represents the entry point of
M, such that in-degree(s) = 0, and T C 'V is a set of
vertices, called termination vertices which represent the
exit points of M, such that for any t € T out-degree(t)
=0 andt # s, and for any v € V (v # s and v does
not belong to T'), 3t € T such that there exists at least
one path from s to v and at least one path from v to t.

Traditional control flow analysis represents each state-
ment of a program as a vertex in its CFG. When analyz-
ing Java bytecode, we represent a bytecode instruction
as a vertex in the CFG. In our CFG, each vertex rep-
resents a bytecode instruction, and each arc represents
the possible control of flow between bytecode instruc-
tions. Moreover, our CFG contains one unique vertex
s to represent the entry point of the method, and a set
of termination vertices T' to represent the multiple exit
points of the method. The reason for using a set of
termination vertices is as follows:

In JVM, a method invocation may complete in two
ways, i.e., normal completion if that invocation does not
cause an exception to be thrown, either directly from
JVM or as a result of executing an explicit thrown state-
ment, and abnormal completion if execution of a JVM

instruction within the method cause the JVM to throw
an exception, and that exception is not handled within
the method. Evaluation of an explicit throw statement
also causes an exception to be thrown and, if the ex-
ception is not caught by the current method, results in
abnormal method completion. Therefore, to represent
these two kinds of completions of a method, our CFG
uses a set of termination vertices T to represent the
multiple exit points of the method, that is, one for the
normal method completion, and the others for abnormal
method completions.

Example. Figure 2 shows the CFG of the bytecode in-
structions in Figure 1.

Definition 3.4 Let w and v be two vertices in the CFG
of a bytecode method. u forward dominates v iff every
path from v to t € T contains u. w properly forward
dominates v iff w forward dominates v and uw # v. wu
strongly forward dominates v ff u forward dominates
v and there ewists an integer k (k < 1) such that ev-
ery path from v to t € T whose length s greater than
or equal to k contains w. u 18 called the immediate for-
ward dominator of v iff u is the first vertex that properly
forward domanates v wn every path from v tot € T.

Definition 3.5 A definition-use graph (DUG) of a
bytecode method M is a 4-tuple Gaug = (Gepg, . D, U),
where Gery = (V,A,5,T) is a CFG of M, ¥ is a fi-
nite set of symbols, called local variables in M, D :
V= P(Z) and U : V — P(X) are two partial functions
from V' to the power set of 1.
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29: pop
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31: istore_3
32: jsr [label _51]

40: goto [l abel _60]

Figure 2: The CFG of the bytecode instructions in Figure 1.

The functions D and U map a vertexin Gy, to the set
of local variables defined and used, respectively, in the
instruction represented by the vertex. A local variable
is defined in an instruction ¢ if an execution of s assigns a
value to x, while a variable x is used in an instruction if
an execution of s requires the value of x to be evaluated.

Based on the CFG and/or DUG of a bytecode method,
we can define intraprocedural dependencies, i.e., control
dependence and data dependence in the method.

3.2 Control Dependencies
3.2.1 Definition of Control Dependency

Definition 3.6 Let Gorg = (V, A,s,T) be the CFG of a
bytecode method, and u, v € V be two vertices of Geyg.
w 1s directly strongly control-dependent on v iff there
exists a path P = (v1 = v,v2), (v2,v3), ..., (V1,0 =
w) from v to u such that P does not contain the im-
mediate forward dominator of v and there exists no
vertex v’ in P such that the path from v' to u does

not contain the immediate forward dominator of v'.
uw 1s directly weakly control-dependent on v iff v has
two successor v/ and v" such that there exists a path
P = (v1 = v,v9),(ve,v3),..., (Vno1, v = w) from v
to u and any vertex v; (1 < n) in P strongly forward
dominates v’ but does not strongly forward dominate v,

Control dependencies represent control conditions on
which the execution of an instruction depends in a byte-
code method. Informally, an instruction u is directly
control-dependent on a control transfer instruction if
whether u is executed or not is directly determined by
the evaluation result of v.

3.2.2  Determining Control Dependencies

Control dependencies represent bytecode instructions
related to control conditions on which the execution of
an instruction depends. There are three types of JVM
instructions that may cause control dependencies.

First, JVM has control transfer instructions that can



cause conditionally or unconditionally the JVM to con-
tinue execution with an instruction other than the one
following the control transfer instructions. Therefore,
these kind of instructions can cause control dependen-
cies.

¢ Unconditional branch instructions: goto, goto_w,
jsr, jsr_w, and ret.

¢ Conditional branch instructions: ifeq, iflt, ifle,
ifne, ifgt, ifge, ifnull, ifnonnull, if_icmpeq,
if_icmpne, if_icmplt, if_icmpgt, if_icmple,
if_icmpge, if_acmpeq, if_acmpne, lcmp, fcmpl,
fcmpg, dempl, dempg.

e Compound conditional branch instructions:

tableswitch and lookupswitch.

Second, in JVM, when the execution of a method is fin-
ished, the method must return the control to its caller.
The caller is often expecting a value from the called
method. JVM provides six return instructions for this
purpose, which include ireturn, lreturn, freturn,
dreturn, areturn, and return. Since these return in-
structions can also change the flow of control for the
instruction execution, they form another source of con-
trol dependencies.

Third, another kind of special branch is the jsr, for
jump subroutine. It is like a goto that remembers where
it came from. When jsr is executed, it branches to the
location specified by the label, and it leaves a special
kind of value on the stack called a returnAddress to
represent the return address. This may cause some con-
trol dependence.

Fourth, exceptions are sort of super-goto which can
transfer control not only within a method, but even
terminate the current method to find its destination
further up the Java stack. Instructions that may ex-
plicitly or implicitly throw an exception can also cause
control dependencies because it can explicitly or implic-
itly change the control flow from one instruction to an-
other. These kind of instructions form another source
of control dependencies.

3.3 Data Dependencies
3.3.1 Definiteon of Data Dependency
Definition 3.7 Let Gopg = (V. A, s, T) be the CFG of a

bytecode method, and u, v € V be two vertices of G.zg.
u 18 directly data-dependent on v iff there exists a path
P = (vy = v,v2), (v2,v3)s. .., (Un_1,vp, = ) from v to
w such that (D(v) N U(v) — D(P') # where D(P') =
D(U2) U...u D("L‘n_l).

Data dependencies represent the data flow between in-
structions in a bytecode method. Informally an instruc-
tion w is directly data-dependent on another instruction

v if the value of a variable computed at v has a direct
influence on the value of a variable computed at w.

3.3.2  Determiming Data Dependencies

We can compute data dependencies by determining the
definition and use information, i.e., the set D and U of
each instruction first, and compute data dependencies
based on such kind of information.

In order to define the data dependencies in a bytecode
method, we use an annotated CFG, namely, the DUN,
whose vertices are as the same as its CFG, and anno-
tated in two functions according to the definition 2.5.
First, there is a function D(v) for the set of all local
variables defined at vertex v. Second, there is a func-
tion U(v) for the set of all local variables used at vertex
v. To construct the DUG of a bytecode method, we
should define these two functions explicitly. Intuitively,
a use of a local variable corresponds to reading the value
of that variable, whereas a definition of a local variable
corresponds to writing a value into it.

According to JVM, once a method is invoked, a fixed-
size frame is allocated, which consists of a fixed-sized
operand stack and a set of local variables. Effectively
this latter set consists of an array of words in which
local variables are addressed as word offsets from the
array base.

First, we can determine the definition information, i.e.,
the set D, of each instruction in a bytecode method as
follow:

e A bytecode instruction that assigns a value to a lo-
cal variable in this frame forms a definition of that
variable. Therefore, the instructions istore_<n>,
istore, iinc, fstore_<n>, fstore, astore_<n>,
and astore form definitions of the local vari-
able that is defined either implicitly in the op-
code or explicitly in the next operand byte (or
two bytes if combined with a wide instruction).
Similarly, because the instructions dstore_<n>,
dstore, lstore_<n>, and lstore effectively oper-
ate on two local variables (viz. a data item of type
long or double at n effectively occupies local vari-
ables n and n+1), we let each such instruction form
two definitions of local variables.

For example, instruction iinc 5 1 forms a defini-
tion of local variable 5, while dstore_0 forms defi-
nition of both local variables 0 and 1.

¢ The parameter passing mechanism of bytecode
causes another source of definitions of local vari-
ables: if w words of parameters are passed to
a particular method, then invoking that method
forms initial definitions of the first w local variables.
The types of these parameters can be easily deter-
mined from the bytecode context. For an instance



method, the first parameter is a reference this to
an instance of the class in which the method is de-
fined. Types of all other arguments are defined by
the corresponding method descriptor.

Second, we can determine the use information, i.e., the
set U, of each instruction in a bytecode method as fol-
low:

e A bytecode instruction that reads the value of a
local variable forms a use of that variable. There-
fore, the instructions iload_<n>, iload, iinc,
fload_<n>, fload, aload_<n>, and aload forms
uses of a single local variable defined either implic-
itly in the opcode or explicitly in the next operand
byte (or two bytes if combined with a wide instruc-
tion). Similarly, instructions dload_<n>, dload,
1load_<n>, and 1load effectively form uses of two
local variables. At implementation level, each use
in a particular method may be represented by two
words: the address of the using instruction and the
offset of the used local variable.

Once the sets D and U for each instruction of a byte-
code method have been determined, the DUG of the
method can be constructed. Based on the DUG, it is
straightforward to compute data dependencies between
instructions in a method.

4 Applications

The dependence analysis technique presented in this pa-
per are useful for many software engineering tasks re-
lated to Java bytecode development. Here we briefly
describe three tasks: bytecode slicing, understanding,
and testing.

4.1 Bytecode Slicing

One of our purpose for analyzing dependencies in a byte-
code program is to compute static slices of the program.
In this section, we informally define some notions about
statically slicing of a bytecode program, and show how
to compute static slices of a bytecode program based on
dependence analysis.

A static backward slicing criterion for a bytecode pro-
gram is a tuple (s,v), where s is an instruction in the
program and v is a local variable used at s. A static
backward slice SS(s,v) of a bytecode program on a given
static slicing criterion (s, v) consists of all instructions
in the program that possibly affect the value of the local
variable v at s.

Similarly, we can informally define some notions of for-
ward static slicing of a bytecode program.

A static forward slicing criterion for a bytecode program
is a tuple (s, v), where s is an instruction in the program

and v is a local variable defined at s. A static forward
slice SS(s,v) of a bytecode program on a given static
slicing criterion (s,v) consists of all instructions in the
program that possibly be affected by the value of the
variable v at s.

In addition to slicing a complete bytecode program, we
can also perform slicing on a single bytecode method
independently based on dependence analysis of the
method. This may be helpful for locally analyzing a
single method.

4.2 Bytecode Understanding

Sometimes it is necessary to understanding a bytecode
program. For example, in the case that we can only
get the class files of a Java application, but can not get
the source code of the application. When we attempt
to understand the behavior of a bytecode program, we
often want to know which local variables in which byte-
code instructions might affect a local variable of interest,
and which local variables in which bytecode instructions
might be affected by the execution of a variable of inter-
est in the program. As discussed above, the backward
and forward slicing of a bytecode program can satisfy
the requirements. On the other hand, one of the prob-
lems in software maintenance is that of the ripple effect,
l.e., whether a code change in a program will affect the
behavior of other codes of the program. When we have
to modify a bytecode program, it is necessary to know
which local variables in which instructions will be af-
fected by a modified variable, and which local variables
in which instructions will affect a modified variable. The
needs can be satisfied by backward and forward slicing
the bytecode program being modified.

4.3 Bytecode Testing

A bytecode program can have bugs since the methods
used for Java software testing do not necessarily remove
all possible bugs from its source program. So it is neces-
sary to propose some testing methods for Java software
at the bytecode level. Since our dependence analysis
technique analyzes both control and data dependencies
which represent either control or data flow properties
in a bytecode program, it is a reasonable step to define
some dependence-coverage criteria, i.e., test data selec-
tion rules based on covering dependencies, for testing
Java software at the bytecode level.

5 Concluding Remarks

In this paper we presented a dependence analysis tech-
nique to Java bytecode and discussed some applications
of our technique in software engineering tasks related
to Java bytecode development which include bytecode
slicing, understanding, and testing. In addition to these
applications, we believe that the dependence technique
presented in this paper can also be used as an underly-



ing base to develop other software engineering tools to
aid debugging, reengineering, and reverse engineering
for Java bytecode. In order to make our technique more
useful, we are now extending our analysis technique to
handle interprocedural dependence analysis as well as
exceptions and concurrency in Java bytecode.

Now we are developing a dependence analysis tool to
automatically analyze various types of primary depen-
dencies in a bytecode program and construct the depen-
dence graph for the program. We also intend to use the
graph as an underlying representation to develop slicer
and testing tool for Java bytecode.
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ABSTRACT

Testing of complex software systems that operate on
platforms with limited resources and have real-time
congtraints is a difficult task. Third Eye is a framework for
tracing and validating software systems using application
domain events. We use forma descriptions of the
constraints between events to identify violations in
execution traces. Third Eye is a flexible and modular
framework that can be used in different products. We use
Third Eye for testing an implementation of the Wireless
Application Protocol (WAP). Our tool is a helpful addition
to software development infrastructure.
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1 INTRODUCTION

Currently many software-intensive systems such as
personal communication devices or communication
network elements integrate many dozens of software
components that are designed to run on different types of
hardware, to interoperate with different environments and
to be configurable for different modes of operation and
styles of use. To complicate the situation further, these
components are often developed by geographically
distributed teams, using different programming languages,
development tools, and even different design and
development methodologies. All this makes complete
testing of these systems in a lab very hard. In these
circumstances, understanding what interaction between
multiple software components caused a fault is an
extremely tedious process. There is a definite need to
update our approaches to testing such systems.

Complexity of modern software led many organizations to
focus on software architecture to simplify software life-
cycle management. Testing is not commonly done against
architectural descriptions because a significant conceptual
gap exists between typica architectural description of
complex software and its implementation.

Rahav.Y airi@nokia.com

In the Third Eye project, we have defined a methodology
for tracing software execution by reporting events
meaningful in the application domain or essential from the
implementation point of view. Many of the ideas
incorporated in the Third Eye framework were inspired by
the Logic Assurance system [2] and work on enforcing
architectural constraints [1]. In Third Eye, we have used
different technologies to make the framework more
extensible, to alow its integration with other trace analysis
tools and specification languages. The implemented
prototype of the Third Eye framework includes reusable
software components for event definition and reporting and
stand-alone tools for storage and query of event traces,
constraint specification and trace analysis. We also made
our framework portable to a number of execution
platforms.

2 THIRD EYE ARCHITECTURE

Tracing execution of complex software is a standard
practice in many projects. However, most projects perform
the tracing in an ad-hoc manner with little or no method
and tool support. Often tracing is added in response to
difficulties in system integration testing. In such situations,
traces have neither coherent content nor format necessary
for structured information storage or automatic analysis.
Third Eye transforms a useful ad-hoc technique into a
disciplined engineering practice.

2.1 Third Eye Conceptual Architecture

A central decision of the Third Eye framework is what
information from the execution state of the program is
traced. We decided to trace occurrences of events. Unlike
program variables, function calls and other implementation
domain constructs, events cross the boundary between
application and implementation domains allowing abstract
specifications that use their properties and a simple
representation in the implementation domain. Such
representation helps to produce traces without introducing

new errors. “Event” in this case is a qualitative change in
the state of an entity either meaningful in the application

domain or significant architecturally.
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Figure 1. Third Eye Conceptual Architecture

Figure 1 illustrates the Third Eye conceptua architecture.
In the Third Eye framework, events are typed objects. One
way to implement event types is to take advantage of the
programming language type system. This would support
the type safety and inheritance of event manipulating code.
However, we have chosen to make the event type system in
Third Eye externa to the programming language. This
allows dynamic definition of new event types as well as
sharing of event types between the event reporting and
event monitoring subsystems that might reside on different
platforms.

An event type has a name, a list of named and typed
properties, and a type constructor. Third Eye event types
are similar to classes in programming languages although
the only method associated with the event type is its
constructor. We alow event type inheritance. Type
constructors minimize the code needed for creating new
events. To report an event, developers specify the type of
the event and sets values of the event properties.
Developers need to set only the properties that were not set
aready by the event constructor.

Events in Third Eye are characterized by the time and

that are subtypes of Ti nedEvent and
Local i zedEvent types. Such events have predefined
propertiest i nest anp andl ocati on that are set in a
constructor.

Correct behavior specifications define constraints on the
properties of the events, their sequence, location, and
timing. We use formal descriptions of the constraints
between events to identify violations in execution traces.

Another important concept of Third Eye is thmacing
state. A tracing state is a set of event types generated in that
state. Other event types are filtered out and not reported.
The system is always in a specific tracing state. Tracing
states have two important purposes. First, tracing states
correspond to specifications. A program specification
describes a set of constraints on events. The event types
used in a specification have to be monitored to validate a
trace against this specification. All event types contained in
a specification and monitored for this specification form a
tracing state. Consequently, there is a mapping between
specifications and tracing states. This mapping allows to
filter out events irrelevant to the specification.

location of their occurrence. By “location” we mean the Tracing states also control the overhead of tracing on the

symbolic location within the executing software. Time may €xecuting system. A control interface is provided to
be measured locally on a specific processor, but needs tglynamically define and change tracing states. For example,

have a globally meaningful interpretation in

multiprocessor system. Time/Location stamping of the Observation of an
events is implicit in Third Eye and is done for all events

a the level of tracing detail can be increased in response to

anomaly in system behavior.
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2.2 Third Eye Modulesand Interfaces

The Third Eye framework includes modules for event type
definition, event generation and reporting, tracing state
definition and management, specification-based trace
monitor generation, trace logging, query and browsing
interfaces and trace visualization (Figure 2). Modules of
event type definition, event reporting facility and tracing
state controler are integrated with the software of the
system under trace (SUT). The rest of the modules are
independent from the SUT and can be deployed on a
different execution platform to minimize the influence on
system performance.

The Third Eye module structure is designed for different
modes of operation. Users do not need to learn and manage
modules of the framework that are not relevant to their
project. Thus, for example, it is possible to use the Third
Eye framework only to store a stream of eventsin relational

Event Type

database without correct behavior specification and
analysis components.

The module structure was partitioned along the lines of
standard interfaces to achieve portability and to enable
integration to third party software and tools. For example,
the event reporter and tracer can be connected through a
file, a socket, or using an ORB. Trace delivery for logging
and analysis uses alternative interfaces to accommodate
devices with different data storage and connectivity
capabilities.

3 USING THIRD EYE

We have implemented a Third Eye framework prototype
that is currently used by the Third Eye project team in
collaboration with product development teams in Nokia's
business units. Figure 3 illustrates Third Eye's use in the
software devel opment process.

Requirements - Definition - Specifications Test Runs -
Analysis Design Development }—»{ Testing & QA |

Identify event types in
the domain space

Define system behavior as
relationships between
events in a stream of
reported events

Monitor event stream to
ensure consistency of
implementation and
specifications

Add event
reporting to the
system software

Figure 3. Third Eye in Software Development Process



We used Third Eye to test a number of software systems:
the memory subsystem of one of Nokias handsets,
Apache Web Server, and WAP (Wireless Application
Protocol) [3] client. In this section, we describe the testing
of WAP client protocol layers and conformance to the
logical scopes design discipline explained below.

Other Services and

Wireless Application STVIC
Applications

Environment (WAE)

‘ Wireless Transaction Protocol (WTP) ’

‘ Wireless Session Layer (WSP)

‘ Wireless Transport Layer Security (WTLS)

‘ Wireless Datagram Protocol (WDP) |

Bearers:

‘SMS HUSSD‘ ‘CSD ‘ ‘R—Data‘ ‘Packe&‘ ‘UDP ‘ ‘PDC-P‘ ‘Etc... ‘

Figure5. WAP layered architecture

The Wireless Application Protocol (WAP) is an industrial
standard for applications and services that operate over
wireless communication networks. WAP layered
architecture (Figure 5) provides an application layer
through Wireless Session Protocol (WSP) that interfaces
to session services. A connection-oriented service
operates above the Wireless Transaction Protocol (WTP)
layer. The WTP runs on top of a datagram service.

W S P W TP
S-Method.req

TR -Invoke.req

o

TR-Result.ind
S-Reply.ind -

Figure 6. WSP-WTP primitive sequence for request-
response

3.1 Validating WAP primitive sequences

When an application requests information through the
WAP protocol, such request passes through protocol
layers as a sequence of primitives defined by the WAP
standard. Specifically, a request for information by an
application is handled as a method invocation at the
session layer (WSP). In turn, this method invocation is
translated into a transaction at the transaction layer (WTP)
(Figure 6). In detail, the invocation of an S-Method
request is followed by the invocation of the TR-Invoke
request. When the transaction returns a TR-Result result,
itisused in S-Reply that forwards received information to
the application. We have simplified the message diagram
in Figure 6 for clarity purposes. The full message

sequence contains additional  confirmations and
acknowledgements.

Although the message sequence in the protocol
specification is rather smple, it spans two protocol layers,
anumber of implementation files and functions, and is not
easy to validate. Furthermore, the protocol allows many
outstanding method invocations and many outstanding
transactions, making user tracking of the protocol state
very difficult. Third Eye simplifies this process. With
Third Eye users add events in the functions that
correspond to the protocol primitives and then check
whether the event sequence corresponds to the protocol
message sequence. To monitor the WSP-WTP primitive
sequence, we defined the following event types:

te_event _type("S- Method. req",

TIMED, "Transaction |ID', | NTEGER)
te_event _type("TR-1nvoke.req",

TI MED, "Transaction |ID', | NTEGER)
te_event _type("TR-Result.ind",

TIMED, "Transaction |ID', | NTEGER)
te event type("S-Reply.ind",

TIMED, "Transaction |ID', | NTEGER)

The first parameter of definitions specifies the type name
of the event, for example "S- Repl y. i nd". The second
parameter indicates the constructor to be used, in this case
the TI MED constructor that sets an inherited timestamp
property. The third and fourth parameters specify the first
property of the event, which for all types above is called
Transacti on | Dandisan integer.

After defining event types, the event invocations are
placed in corresponding functions and events are reported
during testing in an event trace. The event stream can be
read from a socket or from a storage device like a file.
Events are mapped to SQL statements and stored in a
database. Events can also be mapped to Prolog clauses to
be stored in a Prolog fact file. These mappings are simple
because Third Eye event structure corresponds to SQL
tables and Prolog predicates. The tracer has a graphical
user interface that allows the system tester to change the
tracing state during runtime.

Events and event type information are stored in an SQL
database through the ODBC interface. System testers can
use DBMS query and reporting tools to visualize system
behavior and to browse the stored event information. This
provides an interface to find errors without writing a
system specification.

Third Eye checks the trace using constraints that specify
the correct event sequence:



method with_result(TransactionlD) :-
S- Met hod. req( Transactionl D, Tinel),
TR-1 nvoke. req(Transactionl D, Ti ne2),
TR-Resul t.ind(Transactionl D, Tine3),
S-Reply.ind(Transactionl D, Tine4),
Tinmel < Tine2 < Time3 < Time4.

This constraint is expressed as a Prolog rule. The constraint
requires the protocol primitives to follow each other in a
correct order. When Third Eye checks a trace, it finds all

events corresponding to the constraint and alerts the user if

any events do not satisfy the constraint. In this example, the
trace will contain events of four types defined above:

S- Met hod. req(1, 100)
TR-Result.ind(2, 150) // Violation
TR-I nvoke.req(1l, 200)

TR-Resul t.ind(1, 300)
S-Reply.ind(1, 400)

Third Eye will match all events corresponding to the given
constraints. In our example, it will match four events with
transaction number 1. These events are tagged as
conforming to the specification. The events that remain
untagged after matching violate the constraints. In this
example, TR-Result.ind(2, 150) event violates
the constraint, and the system informs the user that program
behavior contains errors. Since this method of constraint
testing would flag all events of types that do not appear in a
constraint, such events should be excluded from the trace
by using atracing state.

3.2 Logical scopesin WAP implementation

While investigating the WAP implementation as well as
implementations of other software systems, we became
aware of the general design problem of resource
management. Resources, especialy in embedded systems,
are limited. Resources that are allocated and not released or
that are released too late could cause a decrease of
performance or a system crash. The objective isto design a
methodology in which resource management is explicit,
easy to maintain and where violations can be easly
identified.

In many cases, system functionality can be characterized as
a set of nested tasks that have beginning and end. To
perform atask, a system requires certain resources such as
memory, processor time, input focus, persistent data locks,
or virtual paths. Functional tasks establish scopes in which
logical and physical resources are allocated and freed. The
scope can be establishing and terminating a call on a
mobile phone, handling an authentication request on a
security server, establishing and terminating a virtua
connection on an ATM node and so on. There is usually no
single control scope such as a function call and return that
delimits the life span of the task. This makes it hard to
determine which resources were alocated to perform this
specific task, when the task has been completed, and when

resources can be freed.

The key to our approach to managing resources is the
notion of a logical scope. A logical scope is the time span
between beginning and termination of a task. Although it
may be hard to represent logical scopes in the structure of
the software, it is usualy possible to identify where a
logical scope begins and where it terminates. It is then
possible to define events that represent beginning and
termination of different logical scopes. One can also create
specifications of resources that are required within a scope.
If allocation and release of these resources is reported to
Third Eye, the Third Eye framework can monitor
correctness and efficiency of resource management within
logical scopes. A generic rule for logical scope validation is
validate scope:

val i date_scope : -
task_begi n( Taskl D, TaskBegi nTi ne),
resource_al |l ocati on(Resourcel D

Taskl D, AllocTine),
resource_free(Resoursel D, FreeTine),
task_end(Taskl D, TaskEndTi ne),
TaskBegi nTine < All ocTine < FreeTinme
< TaskEndTi re.

In the WAP implementation, there are numerous places
where the logical scope model is used. For example, in the
WTP layer a transaction handle is alocated at the
beginning of a transaction and deallocated at the end.
Packets sent in a transaction by the WTP adaptation layer
are allocated before sending and deallocated when the next
message is sent (Figure 7). Packet allocation, transmission,
and deallocation form a nested scope inside the transaction
scope. Neither the transaction scope, nor the packet sending
subscope corresponds to a single textual entity in the
program. Both encompass a number of function calls,
internal message sends, and are intertwined with other
logical scopes and layers. Consequently, enforcing the rules
of logical scope design, i.e. deallocation of resources
alocated in the beginning of a scope, is difficult using
conventional means. However, Third Eye allows a simple
validation of the design by inserting allocation and
dedllocation events together with the logical scope
boundary events and specifying design constraints. The
rules mirror similar rules without logical scopes. For
example, ageneral packet deallocation ruleis:

packet deal | ocate_spec
(Packet, AllocTinme, DeallocTine) :-
packet al |l ocat e( Packet, AllocTine),
packet deal | ocat e( Packet, Deal |l ocTi ne),
Deal | ocTinme > All ocTi ne.

Adding the logical scope boundaries simply adds a
condition:



packet deal | ocat e_| ogi cal (Packet) : -
packet deal | ocat e_spec
(Packet, AllocTinme, Deall ocTine),
same_scope_fol | ows(Al |l ocTi e,
Deal | ocTi ne) .

same_scope_fol l ows(Ti mel, Time2) :-
scope_begi n( ScopeBegi nTi ne) ,
scope_end( ScopeEndTi ne) ,

ScopeBegi nTi me<Ti nel<Ti me2<ScopeEndTi ne.

~~._WTP Transaction Begin

N
W TP Packet Allocate

WTP Packet Send

W TP Packet Deallocate

W TP Packet Allocate
WTP Packet Send

W TP Packet Deallocate

b4

-~ "WTP Transaction End

Ya~

Figure 7. WTP transaction scope and nested packet
allocation sub-scope

3.3 Global constraintsin WAP

Although previous sections dealt with properties of the
protocol expressed as sequences of events, Third Eye can
monitor much wider variety of constraints. For example,
the tool can check a property that all packets with low
sequence numbers arrive within a certain amount of time:

| ost _packet (Packet Nunber) :- not(
packet recei ved(Packet Nunber, T)),
Packet Nunber < LOW BOUNDARY.

The Third Eye can aso check whether the number of
maximum outstanding method requests in a session layer is
less than the maximum possible value. Violation of such
congtraints could be difficult to spot with conventional
tools.

4 CONCLUSIONS
Third Eye can be used for debugging, monitoring,
specification validation, and performance measurements.

exchanged.

Several features of our prototype framework were essential
to make it practical to use in product development:

e Portability—by defining a simple API for the SUT
and by not relying on a specific interface between the
SUT and the Tracer, Third Eye can be integrated into
many different systems throughout Nokia. The trace
structure conforms to the data-management tool
formats and alows automatic trace anaysis for
specification verification.

e Low overhead—event processing is mostly done
outside the SUT. Adding a dynamic filtering allows the
user to control which events will be reported back to
the tracer.

We believe that the Third Eye is a practical framework for
specification-based analysis and adaptive execution tracing
of software systems.
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All these different scenarios use typed events—a concept
simple and yet expressive enough to be shared by product
designers and developers. Users can achieve the system-
testing goals without delving into complicated concepts
like formal methods or database programming.

The Third Eye is designed with an open architecture.
Therefore, the third party tools, including databases,
analysis and validation tools, can be easily added or
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Abstract ous and explicit specification of the desired behaviour of

the system. As such, they are a good basis for automated
This paper presents a discussion on the complementast activities. Additionally, testing to generate counter-
roles of testing and proof within automated software vetxamples to proofs can save much effort and produce il-
ification and validation processes. We demonstrate holwatrative examples for debugging.

combination of the two approaches can lead to greater levThe use of formal specifications themselves is still seen
els of automation and integrity. In particular we discug$fy many as a barrier to the widespread industrial usage
the use of automated counter-example generation to sgpformal methods. For the benefits of formal methods
port proof, and automated proof as a means of automating/&V to be fully exploited in industry there is a need
and CheCking test case generation. The hlgh levels of %J-“disguise” the forma"ty in some way [15] Recent
tomation are made possible by identifying repeating strygork [5] has shown that formal specifications and the cor-
tures in the proofs, restricting the specification to a subsgéponding proof obligations for specification validation
of an otherwise expressive formal notation and eXplOEan be generated from more intuitive engineering nota-
ing a general—purpose theorem proving tool with built-ifons with mathematical underpinnings. Such an approach
constraint solvers. not only enables engineers with the domain knowledge
to use specification notations they are comfortable with,
but the translation to formal specification has the effect
1 Introduction of restricting the subset of the formal notation used and
imposes regular structures on the proofs that need to be
In the past, testing and proof have not been easy béificharged to validate certain properties (such as com-
fellows. Despite their shared goal of increased softwapleteness and determinism) in the specification. These
quality, proof has been seen as being for the cognosceffttrictions, coupled with the subset of data types used
testing for software engineering’s working class. The af®r particular domains can be exploited to develop power-
thors believe that this artificial dichotomy is harmful anf!l targeted heuristics for automating the V&V activities.
that testing and proof can be used together to good &f€ approaches discussed in this paper are assumed to be
fect. Even without the benefits of formal refinement, fokndertaken in the context of formal specifications gener-
mal specifications can contribute greatly to the quality 8f€d in this manner.
a software product. They allow for a concise, unambigu-In the rest of the paper we describe how a combination



of testing, proof and restricted structures in the specifi-6] type checker and theorem prov@ADIZ [19] to au-
cation can be used to enhance both the integrity and tamate this task. In this sense our usag€ADIZ is sim-
tomation of several areas of the software verification aildr to that of the Nitpick Z-based specification checker
validation process. This symbiotic relationship betwe¢h?] that used model-checking techniques to generate
testing and proof is made feasible by extending previocsunter-examples to specification assertions. However,
work on testing from formal specifications and makinGADIZ has the additional flexibility that general purpose
use of a flexible theorem proving tool with integrated comroof tactics can be written (using a lazy functional nota-
straint solvers. tion [20]), that can be invoked interactively from within
The paper is structured as follows. Section 2 discusske tool and applied to any proof obligation on the screen.
the role of testing in the automatic generation of countd?roof tactics have been written that attempt a best effort
examples to proofs. Section 3 describes how proof catautomatically proving conjectures of certain types (e.qg.
be used as a means of verifying automated test case gemnpleteness checks). If the proof fails or is inconclusive,
eration strategies and also as a means of performing tie tactics then perform some simplification to transform
automation itself. We also show how more effective teghe conjecture into a suitable form for the integrated con-
ing strategies can be developed based on the automsitiaint solvers. A number of constraint solvers can then
generation of formally specified test cases and how prduf invoked to attempt counter-example generation, these
can be used as a testing oracle. Section 4 summarisesrbkide a model-checker (SMV [3]) and a simulated an-
main contributions of the work and presents some conchealing based heuristic search [6]. The amount of simpli-

sions. fication required before the constraint solvers can be effi-
ciently applied will depend on the structure of the proof
. obligations.
2 Testing and Proof Such automated proof tactics have been used to good

effect when a large number of similar proof conjectures
Proof conjectures can arise at various points in the V&Were needed to be solved [5]. A situation which would
process. For example, to ensure that a specification $give otherwise been time consuming if done manually
isfies certain “healthiness” criteria such as completeneggl could have led to “reviewer blindness” leading to
and determinism or to verify that a program is a corregtissed error cases. Different constraint solvers have been
refinement of its formal specification. In all cases, iffound to be effective for different input domains. For ex-
valid conjectures can waste a large amount of proof effasitnple model-checking is only practical for discrete input
Therefore, before a long and arduous manual proof is eglomains, whereas optimisation-based search techniques
barked uponitis re-assuring to have a good degree of care also suited to infinite state spaces and non-linear con-
fidence in the validity of the conjecture. Use of constraistraints.
solving techniques to generate counter-examples not only
saves proof effort but can provide illustrative information
to use when tracking the fault. The generation of count@-  Proof and Testing
examples to verify properties of a specification couched in
terms of proofs is a form of testing. Typically sample dateormal specifications are a good basis for testing. They
are generated and then tested to see whether they bedlkv for a concise and unambiguous representation of the
the specification. If this is the case, a counter-exampéuirements and are amenable to proof and automated
has been found. analysis. Test generation techniques for model-based for-

Constraint solving in general is known to be intractableal specifications [14, 8, 17] such as Z [16] or VDM-SL

[13]. However, in practical situations, one never neefl0] are typically based on the principle of partitioning
to solve “general” constraints but a particular subset ththe specification into equivalence classes [9]. Equivalence
have restricted structures and particular input space cl@dasses are partitions of the specification input space that
acteristics. These properties can be exploited to automate assumed, for the purpose of testing, to represent the
the search for counter-examples. The authors use theafne behaviour in the specification. Such techniques are



amenable to automation and tool support. However, adliwrs have automated these proofs for a number of com-
all cases where automation is introduced, and especialign partitioning strategies. Whenever a strategy is ap-
for high integrity systems, the integrity of such tools is gilied, the corresponding correctness proof can be auto-
great importance. For automated testing to be able to pneatically invoked on the result. This ensures that, what-
vide confidence in the conformance of the software to #ger the means of test generation, esultcan always be
specification, the test generation strategies must be bsitlown to be valid or otherwise. The tool can be instructed
verified and validated. In other words, they must not ontg record the individual proof steps taken in applying a
be shown to be correctly implemented but must also peof tactic and these can be printed in a form amenable
shown to be adept at finding errors in the implementatidn.human scrutiny. Therefore, if the tool cannot be trusted,
a rigorous argument can be developed to support the va-

3.1 \Verification of Automated Testing !idity of the proof steps.

Strategies Given a formal definition of a testing strategy as an

) o _ equivalence (e.gTheorem Zabove), the derivation of the

There are various criteria that can be used when verifyiggt cases themselves can also be automated using general
that test partitioning strategies have been correctly impﬁ]rpose proof tactics. The principle is similar in operation
mented. For example, the tests can be shown to cq@ithe use of Disjunctive Normal Form (DNF) to simplify
pletely cover the valid input space of the original specip, expression into a disjunction of conjuncts that can each
fication. If this were not the case, important parts of thg sed as separate test cases. Where conversion to DNF
implementation, that could possibly contain faults mighes simple logic rewrite rules to distribute disjunctions,

remain untested. If the resulting tests are represented {igye targeted equivalences can be formulated based on
ing the same formal notation as the original specificatiofymmon testing heuristics.

these verification activities can be performed using proof.
The completeness of the generated te®ts.([,,) with re-
spect to the original specificatiofxec) can be verified by
proving a conjecture of the following form:

Test partitioning based on the formal specification of
the testing heuristics has been implemented uSIADIZ
proof tactics. Generic partitioning strategies are specified
as equivalencesin the form©heorem 1A prooftactic is

Theoreml1 : invoked upon the predicate to be partitioned to instantiate
F VY Inputs e Spec & T1 V ...V T, the generic equivalence with the operands of the predi-
cate and simplify the whole specification to reveal a dis-

An example partitioning strategy identifies expressiofnction of partitions. Each test case is equivalent to the
in the specification of the forrd v B and partitions original specification where the input space has been con-
these into the following test caséisA B, A A B and strained according to one of the partitions. The complete-
A A —B [8] where A and B could be complex predicateshess of the partitioning strategy is left as a side conjecture
themselves. The conjecture used to prove that these pafrove to ensure that the partitioning was valid. This can
titions preserve the valid input state-space of the origingd automated by extending the partitioning tactic with the
specification would therefore take the following form: general purpose proof for the strategy as described above.
The following simple example demonstrates how test par-
titions are derived. The example specification calculates
the square rootr() of a positive integer®?) and the test
partitions are generated using boundary value analysis of

This theorem can be proven in a few simple steps. Tie > operator (based on the premise that errors often oc-
same proof steps can be used regardless of the strucfifePn or around the boundary [2]).
of the expressions represented yand B. In general,  The specification is given as the following Z schéma
a proof can be derived for each partitioning strategy and
used to verify the outcome each time that strategy is ap-
plied. Using the proof tactic mechanism@ADiZ the au- 17 and! are Z convention for inputs and outputs respectively.

Theorem?2 :
FV Inputs e AV B &
(AANB)V (nAAB)V (AA-B)




__SquareRoot Fadn?,rl:Ren?>0ArIxrl=n?A
n?,rl: R n? > 0.1

n?>0A

: , ) Once the test partitions have been produced, satis-
rixri=mn!

fying test data can be generated by “solving” the ex-
istential quantifications using the constraint solvers in
CADIZ. The partitioning method described above sup-

The boundary value analysis test heuristic for real nu@rts work by Stocks and Carrington [17, 18}ho pro-
bers is specified as the following equivalence. Note tH@sed a framework for the derivation and specification
the “just-off” the boundary case is chosen here as 09f test cases based on the Z notation (the Test Template
This value may vary for different applications and woulframework). The method of test case derivation described
chosen by the tester based on various application @re complements that work by providing a mechanism

tributes such as the resolution of the concrete types ué@g@utomatically applying the test heuristics to reveal the
to implement the abstradt type. test partitions that can then be structured using the Test
Template Framework.

FVz,y:Rex >y &
(z=y)V(y<z<y+01)V(z>y+0.1) 3.2 Validation of Automated Testing Strate-

An un-partitioned test specification for the schema is gies

described as an existential quantifier as follgws: Mutation testing [7] is a fault-based testing technique that
deliberately injects faults into a program in order to as-
sess a test set’s adequacy at detecting those faults. Based
S ] ) ] on the number of injected faults detected (mutation score),

_ The partitioning theorem is now introduced and instaggncjusions about the general fault finding ability (muta-
Flated with thg local opgrands. The partitioning theoregy, adequacy) of the test set can be formed. Mutation
is left as a side condition that should be proven befoggiing provides a means of validating the test strategies
the test cases can be considered valid. This results inghe.;ssed in the previous section. Automatic test case

following theorem: generation, as described above, can provide a statistically
significant number of test cases for various strategies. The
mutation adequacy of each of these strategies can then be
assessed to compare their relative effectiveness at detect-
ing faults [1].

Expressing a test case specification as a formal specifi-

The side condition is proven (e.g. using a pré:_auon from which the test data are generated also opens

determined proof tactic) and the existential quantifier sirﬁ?eglsee ?ﬁjmltgi;%rssc%r?:o??ﬁglggg Tﬁ?g%?{gg;gi mu-es
plified to leave the following three test cases. ' 4

can be applied at the specification level to create specifi-
FAn?, i Ren? >0A !l xrl=n? A cations that represent an abstract description of potential
n? =0 - faults in the implementation (as first suggested by Budd
and Gopal [4]). If test data can be generated from the
original specification that identify (kill) the mutants, that
F3n?,rl:Ren?>0ArIxrl=n?A data is also likely to achieve a relatively high score at
0<n?<0.1 the program level. The data generated from the specifi-
cation would have been “hardened” in some sense against

Fadn?,rl:Ren?>0Ar!xrl=n?

Ve,y:Rex >y &
(z=y)V(y<z<y+01)V(z>y+0.1)
FIn?,rl:Ren?>0Ar!Ixrl=n?A
(n?7=0)Vv(0<n?<0+4+0.1) V(n?>0+0.1))

2This can be roughly interpreted as: there exist some values%or
andr! that satisfy the specification and can therefore be used as suitabléAs well as building on other important work in the area such as
test data. [11, 14, 8].




the likelihood of encountering co-incidental correctnesgen applying the tests to the implementation. If harden-

in the implementation. ing predicates could be automatically generated based on
In general, the number of mutants that can be genarknown set of specification mutations, it may be possi-

ated for an expressive formal specification notation sulke to use the feedback from traditional mutation testing

as Z would be extremely large. However, in practice, onipproaches (for assessing the effectiveness of test sets) to

a subset of the notation would be used for any particukutomatically select the most effective test strategies for

application domain. In this case, the number of possgiarticular types of program.

ble mutants would be limited. From within this subset

more selective choices of which mutation strategies to ap-

ply can be made by analysing the mutation score of par-

ticular testing strategies. Hardened test data can thergt?g Proof as a Testing Oracle

generated from the test cases by strengthening the predi-

cate of the test case to improve the probability that data are o .
generated to kill the chosen set of specification mutant§St data generated from formal specifications are typi-

In some cases, one set of test data could be generate%a{y not at _the same Ie_vel of abstractl_on as Is n_eeded
kill a number of mutants. However, where the hardenifg €St the implementation. Some refinement will be
predicates are inconsistent, several sets of test data rﬂ%?ded to exercise the implementation with the test in-

need to be generated. Take as an example, the followijS: For implementations which do not preserve the

simple test case for a system which averages two nuifucture of the original specification this refinement
bers: may be difficult. In addition, some specifications may

be non-deterministic, eliminating the possibility of pre-
3 A, B, Result : N o Result = (A + B)div2 calculating expected test results.

The test data can be hardened against the mutatior'?‘n alternative to the structured decomposition of the

. . ; . specification into test cases and expected results, as dis-
where thet is replaced by a by adding an inequality to ) B N
the test case. cussed above, is to use a “generate and test” approach.

Test inputs are chosen via any means (e.g. randomly)
JA,B,Result :N| (A+ B)#(A—B) e anq the results of applying the inputs to th_e implemen_—
Result = (A + B)div2 tation are then checked for conformance with the speci-
fication. This approach can also be used in conjunction
The hardening predicate in this case was+ B) # with the partition-based testing. A statistically significant
(A — B). This represents a necessary condition for deamber of samples can be chosen from each test parti-
tecting the mutant but, in general, will not always be sution to increase the confidence in the equivalence class
ficient. Depending on other mutations that may arise el$gpothesis used to generate the test cases. In either case,
where in the implementation, the new test case can notthe process of checking the test inputs and outputs against
guaranteed to produce data which kills the mutant, butle specification requires a test “oracle”. If enough re-
more likely to do so than without the hardening prediinement information is known to transform the concrete
cate. Mutation analysis was briefly mentioned by Stockgputs and outputs of the system into their equivalent in
and Carrington [17] as an alternative testing heuristic tioe abstract specification, the formal specification and au-
domain propagation in their Test Template Framewotiomated proof tactics can be exploited to form an auto-
However, the authors believe there is still scope for revated oracle. The specification is instantiated with the
search in investigating effective mutation strategies fimputs and outputs and a proof tactic is used to simplify
Z-based test sets and whether mutation analysis carthmexpression tdrue (test passed) dralse(test failed).
combined with standard domain partitioning to providguch simplification is ideally suited to automated theo-
more effective test sets. Therefore, future work will evaluem provers as it typically involves applying many “one-
ate various criteria for designing the hardening predicatasint” simplifications until the expression is reduced to
and their relative efficacy at increasing mutation scoregherTrueor False



4 Conclusions

In this paper we have shown how judicious use of testing
and proof to support one another can lead to significant
benefits for the software V&V process, both in terms of
increased automation and integrity. The use of countefs
example generation can save much wasted proof effort
and the use of proof to support test case design can
used to demonstrate the correctness of the test partition-
ing techniques as well as offering a means of automation
in itself.

The high level of automation is made possible because
of the combination of restricting the subset of the formal
notation used, the ability to predict the structure of thd4]
proofs that are required (and therefore the ability to re-
use proof tactics many times) and the use of a powerful
theorem proving tool with integrated constraint solvin 5]
abilities. In the authors’ experience in aerospace applica-
tions, these restrictions did not need to be contrived but
occurred naturally as a property of the domain and the
types of proof that were performed.

Some of the techniques described here (e.g. counter-

'[)ﬂ Sergey Berezin.

and Giacomo Bucci, editorsProceedings of the
third international conference on achieving qual-
ity in software pages 341-354. Chapman and Hall,
1996.

[2] Boris Beizer. Software Testing Technique$hom-

son Computer Press, 1990.

The SMV web site.
http://www.cs.cmu.edu/~modelcheck/

smv.html/, 1999. The latest version of SMV
and its documentation may be downloaded from
this site.

Timothy A. Budd and Ajei S. Gopal. Program test-
ing by specification mutatiofComputer Languages
10(1):63-73, 1985.

Simon Burton, John Clark, Andy Galloway, and
John McDermid. Automated V&V for high integrity
systems, a targeted formal methods approach. In
Proceedings of the 5th NASA Langley Formal Meth-
ods WorkshopJune 2000.

example generation and automated test case and data gij-John Clark and Nigel Tracey. Solving constraints

eration) have already been applied to a large industrial
case study [5]. Other techniques, (e.g. automated proof
as a testing oracle and application of mutation testing con-
cepts) require more research to fully explore their poten-
tial. In particular, the use of mutation testing techniqueg,ﬂ
both at the code and specification level appears a promis-
ing method of automatically generating effective and ef-
ficient test criteria for Z-based testing of particular appli-
cation domains. This is an area of research that is magig)
possible by the automated framework described in this pa-
per and will be the focus of future work.
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Abstract

The authors are part of a larger group at the
National Institute of Standards and Technology
(NIST), George Mason University (GMU), and
the University of Maryland, Baltimore County
(UMBC). Projects directed by group members use
formal methods, particularly model checking, to
investigate the generation and recognition of test
sets for software systems. QOur positions, in or-
der of increasing potential controversy, are 1) the
use of specifications is an important complement
to code-based methods, 2) test set recognition is as
important as test set generation, and 8) in spite
of some known limitations, our generic frame-
work for testing, with a test criterion as a pa-
rameter and a model checker for an engine, is a
general approach that can handle many interest-
ing specification-based test criteria.

1. Our Relevant Work

For the context of our position, we summarize
our recent contributions to specification-based
testing using a model checker. Model checkers,
which evaluate finite state machines with respect
to temporal logic constraints, are chosen in favor
of theorem proving approaches because 1) signif-
icantly less expertise is required of the end user,
thereby enhancing automation, 2) model checkers
are enjoying an explosive growth in applicability,
and 3) the counterexamples from a model checker
may be directly interpreted as test cases.

In our original paper on the topic [4], we de-
fined mutation testing for model checking spec-
ifications, specifically SMV descriptions. We
defined one class of mutation operators that

Paul E. Black

National Institute of Standards and Technology

100 Bureau Dr., Stop 8970
Gaithersburg, Maryland 20899 USA
paul.black@nist.gov

changed the state machine description; these op-
erators result in failing tests, that is, tests that a
correct implementation must reject. We defined
another class of mutation operators that changed
the temporal logic constraints on the state ma-
chine; these operators result in passing tests, that
is, tests that a correct implementation must ac-
cept. The model checker identifies equivalent mu-
tants: these are temporal logic constraints that
are consistent. We generated tests for a small ex-
ample, ran them against a target implementation,
and measured code branch coverage.

Generating tests to “kill” all mutants is the
first test criterion we investigated. Some other
specification-based criteria are stuck-at faults [1],
CCC partitions [6], MC/DC [7], automata the-
oretic [8], branch coverage [10], disconnection or
redirection faults [11], and transition pair cover-
age [13]. Test generation then is the problem of
finding tests which fulfill the goals embodied in
the criterion. Test set recognition is the conju-
gate of test generation. Whereas test generation
asks, “What tests will satisfy the test criteria?”,
test recognition asks, “How much of the test cri-
teria do these tests satisfy?”

In follow-on work [3], we addressed test set
recognition for a refinement of the mutation anal-
ysis scheme. In particular, we defined a metric in
terms of number of mutants killed by a given test
set compared to the total number of killable mu-
tants. We showed how to turn tests from a can-
didate test set into ”forced” state machines and
then use the model checker to compute the metric.
We analyzed various factors that could introduce
distortions, such as semantically equivalent mu-
tants and mutants that are killed by every test
case, were analyzed.



We analyzed different mutation operators both
theoretically and empirically [5]. For theoretical
analysis, we applied predicate differencing and a
hierarchy of fault classes [12]. To experimentally
confirm the conclusions, we generated tests us-
ing many mutation operators for three different
small examples and compared relative coverage of
the different operators. Although mutation oper-
ators do not correspond exactly to fault classes,
we found good correlation between them. We de-
fined a composite mutation operator which gave
the maximum coverage, and found a single muta-
tion operator which gave nearly-maximum cover-
age using far fewer mutants.

Although the above methods work well for
state machine specifications, most specifications
are written at higher levels in Z, UML, OCL,
SCR, etc. So to be practical, there must
be (semi-)automatic ways of extracting simpler
pieces which can be analyzed. In [2] we defined a
new algorithm to abstract a simple state machine,
focusing on some states of interest to an analyst,
from an unbounded description. We proved that
the algorithm is sound for test generation. That
is, any test produced corresponds to a passing
tests in the original unbounded description.

We also applied the work to the problem of net-
work security [14], particularly cases where con-
figuration changes on one machine can lead to vul-
nerabilities on other machines in a network. Net-
work configurations were encoded as a state ma-
chine, along with the transformations produced
by known attacks. Security policies are stated in
the temporal logic in forms such as ” Under a set of
assumptions, someone outside the firewall cannot
obtain root access on machine X.” If the config-
uration in fact allows such access given the set
of known attacks, a counterexample is produced
illustrating the attack.

In work underway, we encoded different test
criteria as temporal logic constraints. Us-
ing a model checker, we analyzed branch cov-
erage [10], uncorrelated full-predicate coverage
(similar to Multiple Condition/Decision Coverage
or MC/DC [7]), and transition-pair coverage [13],
in addition to mutation coverage. We found that
different metrics are easily encoded into temporal
logic, with some limitations, and that interesting
theoretical comparisons between metrics are fa-
cilitated by formalizing them.

To scale these methods up to problems of use-
ful size and general nature, we successfully ap-
plied them to several different examples. We
began with small, well-known examples such as
Cruise Control and Safety Injection. We also
modeled the operand stack of a Java virtual ma-
chine and several functional source code bench-
marks for unit testing, then generated good test
sets. Currently we are applying the method to a
part of a flight guidance system from an aerospace
firm and to a secure operating system add-on for
a Unix derivative.

Other Work

The earliest work we know of on generat-
ing tests using model checkers is when Callahan,
Schneider, and Easterbrook [6] mentioned that
counterexamples generated from SPIN, Mur®, or
SMYV model checkers can be used as test cases.

Engels, Feijs, and Mauw [9] named some gen-
eral concepts, such as “test purposes” (some goals
to achieve with testing) and “never-claim” (sub-
mit the negation of what you want so the model
checker finds a positive instance). They discussed
positive and negative testing. Positive testing
checks that the system does what it should, which
is appropriate for general system checks. Nega-
tive testing looks for a particular action the sys-
tem should not do. The disadvantage is that one
must specify the errors to look for, but it may be
useful in searching for particular errors.

Most recently Gargantini and Heitmeyer [10]
developed a requirements branch or case cover-
age test purpose using the SPIN or SMV model
checkers. Also conditions in requirements may be
elaborated in the test purposes to exercise bound-
ary conditions, for instance, z > y may be split
intox >y and x = y.

2. Research Questions

In January 2000 the group held an informal
workshop at NIST. Some 20 scientists, professors,
and students spent half a day sharing their views
on the work, listing programs we need, and defin-
ing research topics and questions, such as:

1. What are the effects of semantically identi-
cal, but syntactically different specification
styles on test set quality?



2. How do we make tests observable?

3. How can we partition a huge model be-
tween light- and heavy-weight formal meth-
ods, then combine their results to get tests?

4. What are the advantages and disadvantages
for test generation or expressibility with
SMV and SPIN (CTL vs. LTL)?

5. How can (should) we trade off number of
tests and coverage?

6. What are good (semi-)automatic abstrac-
tions from large, even infinite descriptions for
test generation?

7. Can we use state machine mutations (failing
tests) to check systems for safety?

8. What are a good set of mutation operators,
e.g., for larger models.

9. How do duplicate mutants affect coverage
metrics? Do some sets of mutation operators
produce many or few duplicates?

3. Position Statement

e The use of specifications is an important
complement to code-based methods.

This is an old position, but we argue that re-
cent trends in software development and testing
make it more compelling. The traditional argu-
ment, which is still valid, is that without a speci-
fication, we do not know to test for features which
are entirely missing from the source code. More
importantly, in acceptance tests of binary pro-
grams or conformance testing without a reference
implementation, there is no source code available
at all. During rapid development it may be help-
ful to write tests in parallel with or even preceding
coding; such a model is directly supported by the
use of "use-cases” in requirements analysis. Use-
cases are essentially system tests, and analyzing
use-cases with respect to specification-based test
metrics is an important research area. Further,
there is a body of research that aims to intro-
duce formal methods into industrial development
by amortizing the cost of developing formal spec-
ifications over other, traditionally expensive, life-
cycle phases, particularly testing. Model-checkers

are a relatively new, but powerful tool in achiev-
ing this objective.

e Test set recognition is as important as test
set generation.

There are basically two thrusts to this argu-
ment, one theoretical and the other practical.
The theoretical argument is that scientific com-
parisons between test methods benefit greatly if
a test set produced by method A can be evaluated
directly and without bias with respect to method
B. Test methods that focus purely on test gener-
ation do not satisfy this objective. The practical
argument is that industry has an enormous in-
vestment in existing test sets, primarily in regres-
sion test sets, but also in new development arti-
facts such as use-cases from requirement analysis.
To retain the value of this investment, it is much
more helpful to critique the existing artifacts with
statements of the form, ”Tests of type X and Y
are missing,” rather than merely providing a new
test set that bears no relation to the existing ones.

e In spite of known limitations, our generic
framework for testing, with a test criterion
as a parameter and a model checker for an
engine, is a general approach that can han-
dle many interesting specification-based test
criteria.

We define a model whereby a test criterion is
paired with a specification of a specific applica-
tion, and, with as much automation as possible,
test requirements specific to the application are
generated and satisfied with specific tests, either
new or old. The key is the degree of automa-
tion. We believe that using a temporal logic to
express the test requirements and a model checker
to create and/or match test cases to test require-
ments is a general purpose approach suitable for
many specification-based test methods. As de-
scribed above, this approach has been successful
for a variety of interesting test criteria. One in-
teresting aspect of this line of research has been
in discovering where the method falls short. The
significant result so far is that any test require-
ment that places constraints on pairs of tests (as
opposed to individual tests) is not well handled by
a model checker, since counterexamples are typi-
cally generated one at a time. An example is the



MC/DC metric, popular in avionic applications.
In MC/DC, pairs of tests are required to differ in
the value of exactly one condition. The research
question is how to work around this expressibility
constraint.
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Abstract mon formal design specification [UIr98]. However, this ap-
proach gives up the decisive advantage of separating both
In this position paper we propose an overall methodologpecifications—according to it, only specified properties of
for specification-based testing that is founded on a formak system can be tested.
model of component systems. We motivate the importangehis position paper, we propose a more general approach:
of clearly defined description techniques and cover th@pth system specification and test specification should be
role with respect to techniques for the generation and vallased on a common formal model with clear definitions and
dation of test cases. consistency conditions for design concepts as well as test-
ing concepts. Thus, developers can use formally founded
description techniques to specify the component system and
its test cases, both derived from the informal user require-

ments. Techniques and tools based on the formal model

Tradmonall)_/, the role of formal development techniques Wiow to check the consistency of the test model with the de-
system testing has been rather weak, partly due to the wrgn

. . . Icth model, even if they both have been created more or less
perception that the use of formal techniques can abolish a"n y

need for testing. However, experience has shown that %}Pepende”“y' Furthermore, the approach offers the possi-
assumption does not hold in practice, as the effort for t ility of generating test cases both from the design specifi-

e . clgtion as well as from the test specification.
formal verification of large real systems is not manageal?nethe following section, we first explain our vision of

in most cases. In this paper, we want to show that formal = ... . . .
. ' : f - larify th N
techniques can and should be used not to abolish, bué oeCI ication-based testing and clarify the base concepts. In

supplement the established testing methodologies. ection 3, we then cover the role of formally founded de-

o . S 2 . __scription techniques, especially with respect to integration
Testing is an established discipline in software engine P a P y P 9

. . . . ?er'sting. Section 4 deals with techniques and methods for the
ing, and there exists a variety of tools, techniques, and PrQ:

T ‘ . ! . e of such description techniques, focusing on the genera-
cess models in th's area [Bei90, Gr|9_2, Kit95]. Most 'nfoﬁTon and validation of test cases. A short conclusion with an
mal methodologies rely on the creation of two completea/

. e utlook ends the paper.
separated models: the design specification is used to de-
scribe the system’s functionality and architecture, while the
test specification characterizes the set of corresponding @st Specification-Based Testing
cases. At the one hand, this separation is necessary to un-

cover omissions and errors not only in the code of a sy&- our view, a universal componentware development
tem, but also in its design specification. At the other hanglethodology consists of four basic constituents (cf.

much effort must be put into assuring the consistency of fBRSV98c]). Testing plays an important role with respect
two models in order to make tests possible and meanitgall of them:

ful. Furthermore, the informal approach seems to reach its

limits with large distributed component systems. Here, ti&ystem Model: The formal system model represents the
absence of a global state makes it very difficult to specify ~ foundation of the methodology. It defines the es-
and perform reasonably complete, reproducable tests with- sential concepts of componentware, including math-
out relying strongly on the system’s design specification. ematical definitions for the notion of a component,
Most specification-based methods try to resolve these dis- an interface, and their behavior. Also contained are
advantages by generating code and test cases from a com- definitions for testing concepts like test runs or test

1 Introduction



results [BRS ar].

Description Techiques: The formal system model is not

intended to be used for development directly, as us-
ing it requires experience with formal methods. For
developers, a set of intuitive graphical and textual de-
scription techniques is provided in order to describe
and specify the system and its components. This
pertains not only to design descriptions of the sys-
tem itself, but also to test case specifications and
the corresponding consistency conditions [HRR98,
BRSV98c].

e Typesaddress disjoint subsets of interface resp. com-

ponent instances with similar properties. Each in-
stance is associated to exactly one type. Component
types are used to capture component instances with a
common behavior.

Descriptionsare assigned to types in order to char-
acterize the behavior of their instances. Our notion
of a description is very wide: examples are interface
and component signatures, state transition diagrams,
extended event traces, or even source code. For each
description, there exists an interpretation which trans-

lates the notation into terms of the formal system
model. Each description can thus be represented by
a predicate which checks whether certain properties
of the system are fulfilled. Based on this clear, for-
mal understanding, consistency conditions between
the different description techniques can be defined.

Process Model: In order to apply the description tech-
nigues in a methodical fashion, a development and
testing process has to be defined. In the small scale,
this pertains to single techniques like the transforma-
tion and refinement of diagrams or the generation of
test cases from design specifications. In the large
scale, the developmentand testing activities of devedeally, all descriptions should hold for all described in-
opers, testers, and managers in different roles havefances. In practice, however, only few descriptions may
be coordinated. This includes, for example, the defie checked or enforced statically—apart from simple inter-
nition of new roles like black box testers for commetace signatures, this requires formally founded description
cial components, or test case designers for distribute@hniques with refinement and proof calculi that allow the
integration tests [BRSV98a, BRSV98b, ABD9].  verification or generation of code. In practice, one mostly

] . has to resort to extensive testing.

Tools: AF "?aSt' tools_ should support the creation of d(?n the context of the outlined methodology and the formal
scription techniques. Furthermore, they should be . : :

stem model, the testing approach proposed in the intro-
able to generate part of the code, the documenEX— ; . . :
. ction can now be presented in more detail. According
tion, and the test cases for the system. Beyond thalt', L e
S . . 10 our vision for an overall specification-based component-
many applications are possible, ranging from consis- . .
. . ware testing methodology, developers elaborate two differ-
tency checks over simulation to development work- P A
ent specifications based on the initial, informal customer
flow support [HSSS96].

requirements: the formal system specification as well as the

Based on former work on system models and formal fermal test specification. Both are specified with intuitive
scription techniques [Bro95, KRB96, GKR96, BHE7] graphical and textual description techniques based on the

we have presented a formal componentware system m mon formal system model. Developers are provided a

in [BRS*ar], yet without explicit support for test concept&/2riety of techniques and tools, for example, for checking

The base concepts of the model in its current form are Qe consistency between the two models, for generating test
follows: cases from design and test descriptions, and for validating

the consistency of manually created test cases with the de-

e Instancesepresent the individual operational units c3ign descriptions (cf. Section 4).
a component system that determine its overall beh&¥nce all specifications have been elaborated to some extent,
jor. With componentware, this pertains to compdesting itself can start. First, the initial system state specified
nent, interface, and connection instances, and thigithe respective test case has to be established by creating

various relations and properties. Each compondhg corresponding component instances, setting their state,
instance has a defined behavior, determining its iand creating the connections between them. During the test

teraction his[ory with respect to incoming and outun, the external stimuli described in the test case have to
going messages and to structural changes. As fifeexecuted on the component instances, and the resulting
whole component system can be seen as a comp@mmunication and structural behavior must be checked for
nent itself, the state and interaction history of whoompliance with the specification given in the test case. At
component systems can also be captured. This iRe end of the test run, the final state of each component
cludes not only interactions between communicatifig@stance and the connection structure of the system has to
components, but also the structural behavior of tf& compared with the desired state and connection structure
system, understood as the changes to its connecg@gcified in the test case.

structure and the creation and deletion of instancedrathe next section, we make some remarks about suitable
runtime. description techniques, especially with regard to the repre-



sentation of integration test case descriptions. making them unsuitable for the description of the behavior
of large dynamic systems.

.. . The following steps have to be done in order to develop
3 DeSCI’IptIOI’] Technlques for Inte- a toolkit of description techniques suitable for integration

gration Testing testing:
Identification of requirements for description tech-

niques that are suited for the description of the be-
havior of a distributed component system.

As told in the previous section, there exists a variety of dif- 1
ferent description techniques for various aspects of a sys-
tem. We want to base our work on the techniques provided
by the UML [Gro99], adapting and refining them when nec-
essary. With respect to integration testing, the following
kinds of graphical description techniques are especially in-
teresting: 3. Definition of integration test case descriptions based
on the toolkit of description techniques.

2. Elaboration of a toolkit of formally founded descrip-
tion techniques.

e State-based descriptions, lilstate transition dia-
gramsbased on input/output automata are well suited
to describe the state changes and the communica#bn Methods and Techniques
behavior of components or (sub)systems.
o ) ) ~ The development of a successful test design is both an ex-
» Structural description techniques, likestance dia- tensjve and difficult task. On the one hand, a large amount
gramscan be used to describe the connection strugtest data has to be generated and managed. On the other
ture of a component system. hand, each test case should be of high quality in order to
¢ Interaction-based descriptions, likeequence dia- maximize the probability of.findinglremain?ng faults.
lgl%the context of an overall integration testing methodology

grams can be used to describe exemplary or desir g hical d ot t least the following test
interaction sequences of the components in a syst S€d on graphical descriptions, at feast the foflowing test-
ing activities should be supported:

Based on these three graphical description technidests,
case descriptionsan be composed. A typical test case may
contain:

e Generation of test cases from design and test specifi-
cations.

e Consistency checking of manually created test cases

e A specification of annitial configuration described with design specifications.

by an instance diagram and state diagrams for the par-
ticipating components.  Automated execution of test cases and evaluation of

« A specification of thetest case behavippertaining test results.

to the communication of the considered components o \jsualization of test results and animation of test runs
with each other and with the test environmentas well  pased on graphical descriptions.

as to their structural behavior. This specification con-

tains sequence diagrams or state transition diagramse Analysis of test coverage and likelihood of error de-
specifying the external stimuli that have to be initi- tection.

ated by the test environment during the test run as
well as the expected output reactions of the test ob- ¢
ject. With respect to the structural changes, instance

diagrams can be used to specify desired mtermed@\tse the manual creation of test cases is a rather tedious

configurations. and error-prone process that requires much effort, we
e A specification of the desiret¢rminal configuration Want to focus on the automatic generation and valida-
similar to the specification of the initial configurationfion of test cases. As has been shown, automating test
case generation can make testing easier and more effec-
While this overall approach seems to be viable, there tixe [JPP 97]. Several techniques for automatic test case
main many open questions, for example, with respectgeneration from behavior descriptions like Mealy Machines
the adequate syntactical representation of test cases, th¢@e78, ADLU91, FvBK 91, Ura92], X-Machines [IH98],
act semantics of state transition diagrams and sequence/@M [DF93], or Z [Sad99, HNS97] have been developed
agrams, and the treatment of nondeterministic descriptioimsthe past. Recently, these techniques have been applied
Another guestion arises with instance diagrams: like mdstcurrent industrial graphical description techniques like
other structural description techniques, they can only cames provided by UML [Gro99]. Unfortunately, the new
ture snapshots of a system configuration at a certain tirapproaches consider only single aspects of UML and the

Management, organization, and documentation of
test results.



testing process. For example, [KHBC99] presents a metideferences
for generating test cases from UML state diagrams. As the _ .
scope of the discussed method is clearly restricted to UABD T99] Dirk Ansorge, Klaus Bergner, Bernd Deifel,

testing, further work is is needed for integration testing. Nicholas Hawlitzky, Andreas Rausch, Marc

Furthermore, other approaches used for test case genera- Sihling, Veronika Thurner, and Sascha Vo-

tion and validation should be incorporated into the testing gel. Managing componentware development
process. We propose, for example, the use of the classifica- — software reuse and the V-Modell process. In
tion tree method developed by Grimm [Gri95]. This method Proceedings of CAISE '99 ecture Notes in

is particularly well-suited for choosing concrete input data Computer Science. Springer-Verlag, 1999.

A. V. Aho, A. T. Dahbura, D. Lee, and M. U.
Uyar. An optimization technique for pro-
tocol conformance test generation based on
UIO sequences and rural chinese postman
tours.IEEE Transactions on Communications
39(11):1604-1615, 1991. An earlier version
with a same title appeared Rroc. of the IFIP
WG 6.18th International Symposium on Pro-
tocol Specification, Testing, and Verification,
June 1988.

by classifying the input data space. In addition, techniq SDLU91]
based on model checking can complement the testing :j?i)-

cess by generating additional test cases from system prop-
erties [EFM97] or by validating test cases derived from a

test specification [NS93]. We believe that a powerful test-

ing methodology should provide a toolkit of techniques for

test case generation and validation.

Therefore, in parallel to the development of suitable de-
scription techniques (cf. Section 3), the following steps

have to be performed for the development of an adequate
testing methodology:

LBei90] B. Beizer. Software Testing Technique¥an

1. Analysis and evaluation of existing algorithms wit Nostrand Reinhold, New York, 2nd edition,
respect to the covered description techniques and the 1990.

special needs of integration testing.
_ _ [BHHT97] R. Breu, U. Hinkel, C. Hofmann, C. Klein,
2. Analysis and evaluation of complementary genera- B. Paech, B. Rumpe, and V. Thurner. To-
tion and validation techniques for integration testing. wards a formalization of the unified model-
ing language. IProceedings of ECOOP’97

3. Development of test case generation and validation X
. d Springer Verlag, LNCS, 1997.

techniques for high-level graphical description tech-

niques. [Bro9s] Manfred Broy. Mathematical system models
as a basis of software engineeringomputer

4. Integration of selected techniques into a consistent .
g g Science TodayL995.

toolkit.

[BRSTar] Klaus Bergner, Andreas Rausch, Marc Sih-
ling, Alexander Vilbig, and Manfred Broy. A
formal model for componentware. In Murali
Sitaraman and Gary T. Leavens, editéi®,In-
dations of Component-Based Syste@am-
bridge University Press, 1999 (to appear).

5 Conclusion and Outlook
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be validated on a small application example, for example, ling, and Alexander Vilbig. A componentware
in the context of a distributed CORBA system. development methodology based on process
Further work is then needed to transfer the method into patterns. Technical Report 1-9823, Technische
practice. First, a suitable test infrastructure for the execu- Universitdt Miinchen, Institut di¥ Informatik,
tion of test cases must be developed. In the following, tool 1998.

support for the generation of test cases from graphical de-

scription techniques has to be provided, for example, BJRSV98Db] Klaus Bergner, Andreas Rausch, Marc Sih-
extending an existing CASE tool. ling, and Alexander Vilbig. A componentware

development methodology based on process
patterns. INPPLOP‘98 Proceedings of the 5th
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Abstract

This paper presents initial results in model checking
multi-threaded Java programs. Java programs are
translated into the SAL (Symbolic Analysis Labo-
ratory) intermediate language, which supports dy-
namic constructs such as object instantiations and
thread call stacks. The SAL model checker then ex-
haustively checks the program description for dead-
locks and assertion failures. Basic model check-
ing optimizations that help curb the state explo-
sion problem have been implemented. To deal with
large Java programs in practice, however, supple-
mentary program analysis tools must work in con-
junction with the model checker to make verifica-
tion manageable. The SAL language framework
provides a good starting point to interface new and
existing analysis methods with the model checker.

1 Introduction

The Java programming language is becoming in-
creasingly popular for writing multi-threaded ap-
plications. In particular, many Internet servers are
written in Java. Since Java has multi-threading
built in among other advantages, we expect it to
gain popularity in other areas such as embedded
systems where multi-threading is useful.
Developing multi-threaded programs is notori-
ously difficult, however. Subtle program errors can
result from unforeseen interactions among multi-
ple threads. In addition, these errors can be very
hard to reproduce since they often depend on the

*Jens Skakkebaek is now at Adomo Inc., Cupertino, CA.

non-deterministic behavior of the scheduler and the
environment.

It is thus desirable to provide tools for software
developers that automatically detect errors due to
multi-threading. The tools should generate de-
tailed error traces to help the developer during
the debugging phase. We have developed such a
tool based on model checking. A model checker ex-
plores all reachable states of a system model, check-
ing whether they satisfy the user-provided correct-
ness specification including the absence of dead-
locks and assertion failures. Our tool verifies mod-
els described in the SAL (Symbolic Analysis Labo-
ratory) intermediate representation [10], that Java,
among other languages, can be translated down to.

Our research focus was in developing a frame-
work that is tailored towards software verifica-
tion. The SAL model checker supports dynam-
ically changing data structures, which are used,
for example, to model Java object creation and
call stacks. Popular traditional model checkers like
SPIN [12] or Mury [5] support only constant-size
data structures, although an extension of SPIN
called dSPIN [4] has been recently developed to
support dynamic data structures. Nonetheless, the
SAL model checker and the broader SAL language
framework was initially designed with software ver-
ification in mind, with the intention of providing a
system that can deal efficiently with the dynamic
aspects of software.

The main challenge in model checking is the state
explosion problem — the number of states in the
model is frequently so large that model checkers
exceed the available memory and/or the available
time. We have incorporated into our tool two tech-



niques to combat state explosion, a form of partial
order reduction and hash compaction, and are in
the process of implementing additional optimiza-
tions.

We also plan to integrate the SAL model checker
with program analysis tools that prepare large pro-
grams for efficient verification. Our model checker,
for instance, could serve as a back-end to the Ban-
dera [2] framework, giving us direct access to Ban-
dera’s slicing and abstraction tools that may turn
intractable verification models into tractable ones.
To allow for easy integration with Bandera, we
chose to use McGill’s Jimple [17], a three-address
representation of Java byte-code on which the Ban-
dera tools operate, as the input language of our
model checker.

Related works include the model checkers Java
PathFinder [11] and JCAT [3], both of which trans-
late Java into SPIN’s input language PROMELA.
Since SPIN does not support dynamic data struc-
tures, they have to allocate fixed-size heaps and
stacks. In addition, both tools translate directly
from Java source code rather than from byte-code.
Hence, they cannot be easily integrated into Ban-
dera nor verify programs where only the byte-code
is available. Moreover, the translation process
is more complicated since several advanced Java
features like exceptions have a simpler byte-code
representation than a source-code one. The Java
PathFinder group at NASA is in the process of ad-
dressing many of these issues with a new version of
their model checker.

Recently, there has been increasing interest in
verification tools that rely on the execution of ac-
tual code, eliminating the need to represent pro-
gram states and statements using a specialized de-
scription language. VeriSoft [9], for example, can
detect errors in C-style concurrent programs by
monitoring program execution and systematically
directing the scheduler. More recently, Bruening
has integrated a deterministic tester into the Rivet
Virtual Machine at MIT, that can detect deadlock
and assertion failures in Java programs [1]. The
tool relies on checkpointing system states in the vir-
tual machine to backtrack to previous states during
testing, but like VeriSoft, does not store states that
it has already visited. Hence, the disadvantage of
these tools is that the same state may be visited
multiple times. Consequently, large portions of the
state space may be explored redundantly, and non-

terminating programs (e.g., server-side processes
that loop indefinitely) become problematic. The
SAL model checker borrows ideas from VeriSoft-
like tools, but couples them with model checking
techniques to efficiently explore the state space.
Furthermore, our model checker is written in C++
with run-time efficiency in mind.

After giving a high-level overview of the model
checker in Section 2, details of the model checker
and the methods to increase the size of the models
that it can handle are explained in Section 3. Sec-
tion 4 describes the translation steps from Jimple
to an executable model checker. We give results
on several Java sample programs in Section 5, and
conclude in Section 6.

2 Overview of the Model

Checker

The SAL model checker explores all reachable
states of a given Java program. The two sources of
nondeterminism during this state exploration are
the choice of the next thread to run (scheduling)
and the input values from the environment. The
model checker currently detects deadlocks and as-
sertion violations.

The model checker executable is generated in a
sequence of translation steps that includes convert-
ing Jimple into the SAL intermediate language [10].
Using an intermediate representation has two ad-
vantages. First, languages other than Java can be
translated into the intermediate representation, re-
ducing the effort to develop a model checker for
each new language. Second, other analysis tools
that accept SAL as their input language can be
readily used to analyze Java.

SAL is a language for describing transition sys-
tems. The transition system is described with a set
of guarded commands, each of which consists of a
boolean condition on the current state and an asso-
ciated action that changes the current state into the
next state. SAL has two slightly different forms —
Level 1 and Level 0. While SAL Level 1 has explicit
guarded commands, SAL Level 0 folds the guarded
commands into one large transition function.

The SAL language has several features that make
it a good target for software model checkers. First,
SAL provides unbounded arrays whose sizes vary



dynamically. These arrays are used, for exam-
ple, to hold dynamically created Java objects and
threads. (A Java thread is an object of class
java.lang.Thread.) Second, SAL has abstract
data types that can be used as unions. A stack
frame, for example, is modeled as a record con-
taining, among other fields, a union that can hold
values for each possible method return type.

The model checker executable is generated in the
following steps as depicted in Figure 1.

e Java and Java byte-code. Either language
can be used as input language to our model
checker.

e Jimple. Generated by Java byte-code to Jim-
ple translator, which we extracted from the
Bandera framework.

e SAL Level 1. Generated by our Jimple to
SAL translator.

e SAL Level 0. Generated by a trivial transla-
tor from SAL Level 1.

e C++4. Generated from SAL Level 0 by our
SAL to C++ translator. An executable of the
model checker is obtained by compiling this
C++ file together with the C++ model check-
ing core.

3 Model Checking SAL

The SAL model checker does an exhaustive search
of the state space by either a depth first or breadth
first traversal. Starting from the initial state, it
considers the set of rules whose guarding conditions
are enabled in the state. For each enabled rule, the
checker generates a successor state by executing the
associated action. The resulting state is stored in
a hash table so that it is not re-expanded if it is
encountered again. A brute force approach would
generate a new successor state for each enabled rule
that is fired, where a rule would roughly correspond
to one program statement. However, this results
in many unnecessary interleavings between state-
ments that are independent of one another.

As an initial step to combat state explosion,
we adopt the strategy of executing a sequence of
rules local to a thread atomically and interleaving
threads only when a global operation is performed.

In particular, the SAL model checker uses a tech-
nique called atomic blocks that Bruening developed
for the Rivet Deterministic Tester [1]. Secondly,
we use hash compaction to contain the otherwise
unmanageable memory usage necessitated by large
state spaces and state vectors. These model check-
ing techniques are described in the rest of this sec-
tion.

3.1 Atomic Blocks

The SAL model checker uses a form of partial or-
der reduction called atomic blocks [1], that is driven
by synchronization constructs and for which static
analysis is not required. The main idea is to execute
one thread as long as possible before generating a
new state, after which other threads may be sched-
uled. This is safe provided the operations of the
other threads can not possibly interfere with the
operations of the current thread being executed.
The algorithm differs from the usual VeriSoft-like
approach where a global state is defined by the ex-
ecution of a “visible” operation, i.e. an operation
on a shared variable. Because threads in Java share
the same address space, most variable accesses are
potentially visible operations and the interleaving
of threads may become too fine grained.

The atomic block method assumes that accesses
to shared variables are always protected by locks.
Although our tool does not currently enforce this, it
will be extended with techniques used in data race
detection tools for multi-threaded programs. Race
detection methods based on the happens-before re-
lation check that conflicting memory accesses from
different threads are ordered by synchronization
events [13] [6]. Another example is Eraser [15],
a dynamic race detection tool developed at DEC.
Eraser keeps track of what locks each thread owns
when it accesses a shared variable at run time.
When the set of locks one thread holds is disjoint
from the set of locks another thread owns when
they access a common variable, Eraser issues a
warning since the variable should have been pro-
tected by a common lock. Finally, static type-based
analysis has also been successful in detecting race
conditions in large Java programs [7].

Having stated the assumptions, a brief summary
of Bruening’s atomic block algorithm is given here.
At a state s, we generate its successors by taking
each enabled thread in turn and executing it until
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Figure 1: Translation steps in the model checker

an unlock operation is performed or the thread dies.
Ignoring nested locking for the moment, note that
in Figure 2(a) the sequence of statements (rules)
between Unlock(A) and Lock(B) must only modify
variables local to the thread since we assume that
accesses to shared variables require the acquisition
of locks. Hence, it is unnecessary to interleave such
statements with statements from other threads.

Similarly, the statements within the synchro-
nized region delimited by Lock(B) and Unlock(B)
can be executed atomically since no other thread
can access B while the lock is held. Furthermore,
region X and region Y can actually be executed
in the same atomic block because any operation by
any other thread that may execute between the two
regions must be independent of region X. We only
have to consider schedules where such operations
occur before region X. Therefore, we can safely ex-
ecute each thread until an unlock is performed, at
which point we return the new state.

In the case of nested synchronization blocks, the
atomic block algorithm will span multiple locking
operations. In Figure 2(b), for instance, the atomic
block for T1 will begin with Lock(A4) and end with
the first unlock, namely, Unlock(B). This may seem
as though we are neglecting certain schedules, e.g.,

the case in which thread T2 modifies B while T1
has locked A but not B. Yet, such schedules can
be ignored since we will consider the schedule in
which T2 modifies B before T1 locks A; in terms
of assertion checking, it does not matter whether
T2 accesses B before or after T1 accesses A since
A and B are independent.

3.2 Deadlock Detection

In general, a deadlock will be recognized by the
model checker when a state has no successors and
it is not a valid termination state. The only prob-
lem that atomic blocks pose is that certain dead-
locks can be missed. In the case illustrated in Fig-
ure 2(b), the particular schedule required to realize
the deadlock is never executed. As noted before,
the atomic block algorithm will never execute the
schedule in which T2 locks B immediately after T1
locks A but before T'1 locks B. The lock-cycle dead-
lock that results from this schedule would have been
caught if atomic blocks were delineated by locking
as well as unlocking.

However, since larger atomic blocks result in
fewer unnecessary interleavings, and in turn fewer
states, we adopt Bruening’s approach in delineat-



synchronized(A) { | Lock(A)
... | -
} | Unlock(A)
|
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synchronized(B) { | Lock(B)
| region Y...
} |  Unlock(B)

T1 T2:
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Unlock(A) Unlock(B)
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Figure 2: (a) Synchronized regions and atomic blocks. (b) An example of nested locking.

ing atomic blocks by unlocks only and detecting
lock-cycle deadlocks by analyzing states for the ex-
istence of a cycle in the hold-wait relationship be-
tween threads. By keeping track of the most re-
cently released lock for each thread, we can look
for cycles where T1’s most recently released lock is
owned by T2, whose most recently released lock is
owned by T3, and so on until we get to some thread
Tn whose most recently released lock is owned by
T1.

This check is linear on the number of threads,
and is done only when a thread fails to obtain a
lock (i.e. potentially closes a hold-wait chain into a
cycle). Hence, the deadlock check introduces only
a marginal overhead in most cases. Furthermore,
a particular lock-cycle deadlock will always be de-
tected (unless other deadlocks are detected first)
since all schedules of atomic blocks are considered
and the atomic blocks stop at each unlock, effec-
tively considering all the locks each thread has ac-
cessed.

3.3 Implementation Specific Opti-

mizations

We have also implemented simple optimizations
that turn out to be critical in saving time and mem-
ory in model checking with atomic blocks. First, if
an atomic block consists of more than one rule, a
new state is instantiated once and each subsequent
rule in the atomic block updates values in the same
instantiation. This is permissible because interme-
diate states within the atomic block do not have to
be stored during model checking. Since state vec-

tors modeling dynamic structures like the thread
stack and heap can get very large, creating a copy
of the current state after each rule turned out to
be a bottleneck in execution time. In some cases,
the optimization led to an order of magnitude im-
provement in execution time.

Another source of run time overhead was the lin-
ear traversal over the set of rules required in deter-
mining which rules are enabled at each new state.
Since most of the rules map to individual state-
ments in a sequential process, the value of the pro-
gram counter in the current state is used to locate
in constant time the next enabled rule hashed on
the PC value.

Finally, atomic blocks are aborted when a thread
fails to acquire a lock and a successor state is not
generated. This significantly reduces the number
of schedules that need to be considered, reducing
the size of the explored state space while preserving
deadlocks and assertion failures. The informal jus-
tification is as follows. Suppose we have a thread
T1 holding lock A and a thread T2 that blocks
on the lock. The schedule in which T2 blocks on
lock A does not have to be considered since the
model checker will execute some schedule in which
T1 first releases lock A allowing T2 to obtain the
lock. Before T1 releases lock A, moreover, T1 can
not access the same shared variables that T2 ac-
cesses before T2 tries to lock A since this will lead
to a lock-cycle deadlock which our model checker
will detect. (Note that locks can not be unlocked
in the middle of an atomic block so T2 will be hold-
ing all of the locks on variables it accesses before
blocking on lock A.)



Therefore, even when T1 is executed first, re-
leasing lock A, the variables that T2 accesses be-
fore trying to lock A will not have been modified
by T1 and it would effectively be as if T1 was sig-
nalled and allowed to continue. In addition, abort-
ing atomic blocks when a thread blocks on a lock
can not cause any deadlocks to go undetected since
our lock-cycle deadlock checking functionality de-
tects all deadlocks as long as atomic blocks end at
each unlock and thread termination.

3.4 Hash Compaction

To reduce the memory requirements of the model
checker, we have implemented hash compaction [18,
16]. Hash compaction reduces the memory require-
ments of the state table, which stores all states
reached during verification and is used to decide
whether a newly reached state is new or has been
visited previously. Instead of storing the full state
descriptor in this table, hash compaction stores
only a (hash) signature. The memory savings come
at the price of a certain probability that the verifier
incorrectly claims that an erroneous protocol is cor-
rect. This probability, however, becomes negligibly
small when choosing the signature size appropri-
ately. Typical signature sizes are between 16 and
45 bits, resulting in memory savings of often more
than two orders of magnitude.

4 Translation Steps

4.1 Translating Jimple to SAL

The SAL language is used to model the Java (Jim-
ple) program as a state transition system. SAL has
state variables, nondeterministic inputs, an initial-
ization function, and a transition function that is a
collection of guarded commands (or rules).

The state of the Java program is modeled in SAL
using the following state variables: (1) each thread
contains a program counter (PC), stack (array of
frames), and stack pointer (CurrentFrame), etc.;
(2) each object contains a class id, the fields, a
counter for locking, etc. To select the next thread
to execute, we use a nondeterministic input (TID).

Each Jimple statement is translated into a
guarded command. For example, the Jimple state-
ment

io = 1
is translated into

(PCITID] = label_0) -->
next (Stack) [TID]
[CurrentFrame] .localVariables.i0 = 1;
next (PC) [TID] = label_1;

where (PC[TID] = label_0) is the guard condi-
tion, followed by the SAL statements that can be
executed if the condition is true.

The translator has to deal with all advanced fea-
tures of Java like inheritance, overriding, overload-
ing, dynamic method lookup, exception handling,
etc. For detailed descriptions of the semantics of
these features, refer to the Java Virtual Machine
Specification [14]. We believe that most of these
features are easier to deal with at the Jimple level
than at the Java source code level.

Exception handling, for example, is implemented
by four SAL rules and several SAL tables that
are generated at compile time. The first rule is
passed the location label of the statement that
throws the exception, and uses the method_table
to look up the identifier of the method in which
the exception is thrown. The second rule searches
the exception table for this method for a catch
clause that handles the exception. A catch clause
handles an exception only if the class of its param-
eter is the class of the exception or a superclass of
the class of the exception. The subclass_table is
used for this subclass relationship test. The third
and fourth rules deal with the case that during the
search no catch clause is found that handles the
exception. Typically, the third rule is executed,
returning from the method and re-throwing the ex-
ception. If the first stack frame of the thread had
been reached, however, a Java run-time error oc-
curred and this is signalled to the user.

4.2 Translating SAL to C++

The SAL description of the program is translated
into a C++ source file that is #included in the
model checking code, and the result is then com-
piled into an executable that outputs a trace if any
deadlock or assertion failure exists. The included
source file contains:



1. A C++ class with various accessors for each
distinct type in the SAL description. Un-
bounded arrays are used to model data struc-
tures such as the stack and heap, and are im-
portant in storing per-thread data given that
the actual number of threads can not be deter-
mined statically. Unbounded arrays are trans-
lated into dynamically resizing vectors where a
designated default value represents the infinite
sequence of array elements to the right of the
last non-default element in the array. When
an index n greater than the current maximum
index k is accessed, the vector is resized to size
n + 1, letting elements at index k£ + 1 through
n — 1 be default values. Likewise, when the
last non-default element in the vector is set
back to a default value, the vector is resized to
size k + 1 where k is the index position of the
next right-most non-default element.

2. Functions simulating SAL guarded commands.
The guard function takes in the current
state and the current values for the non-
deterministic inputs and returns the next en-
abled rule to execute. The apply function then
executes the enabled rule and any subsequent
rules that fall under the same atomic block,
and returns the resulting successor state to
the model checking routines. Each successor
state is generated by systematically increment-
ing the non-deterministic input values which
includes the thread ID to schedule next.

5 Results

Table 1 gives the examples on which we tried the
model checker. The source code for the examples
is available at

http://verify.stanford.edu/uli/java/

The results we obtained for the examples are given
in Table 2. For each example, we ran the checker
under three different modes:

1. Noatomic: Atomic blocks turned off, interleav-
ing of threads fined grained as possible at the
level of individual rules.

2. LockUnlock: Atomic blocks delineated not
only by unlocking but by locking as well. Does

not require special lock-cycle deadlock detec-
tion method described in Section 3.

3. Unlock: Usual atomic blocks delineated by un-
locking only.

Note that we achieve larger state reductions for
the larger examples. In some cases, the reduction
achieved by atomic blocks is three orders of mag-
nitude. There is, however, many areas still in the
implementation of the model checker where the ex-
ecution time can be optimized.

Before hash compaction, moreover, the KSU
Pipe example could only enumerate 140,000 states
before running out of memory in the noatomic
mode. With hash compaction, both the KSU Pipe
and the ReaderWriter examples were able to be
completed in the noatomic mode.

6 Conclusion

Tools to verify software have become almost a ne-
cessity as both the complexity of software and the
extent of its use in critical systems are continu-
ally increasing. Given the usually intractable state
spaces of software programs, different kinds of ab-
stractions, optimizations, and “tricks” must be em-
ployed in concert to tackle the verification.

The SAL framework provides the means to eas-
ily integrate new and existing verification tech-
niques around a common intermediate representa-
tion. This paper gives preliminary results on ap-
plying this framework to model checking Java pro-
grams. Support for dynamic data structures in
SAL has made translating Java down to SAL direct
and straightforward. Atomic block reduction and
hash compaction demonstrate promising results in
dealing with large state spaces and state vectors.
We plan to extend the SAL model checker with ad-
ditional state space reduction techniques, including
symmetry reduction and a partial order reduction
method called persistent sets [8] that will eliminate
unnecessary interleavings even at the atomic block
level. Yet ultimately model checking optimizations
alone will not be sufficient to curb the state explo-
sion problem. The model checker must be supple-
mented with front-end slicing and abstraction tools
as well as other static program analysis tools. The
SAL framework has provided a good starting point



Table 1: Example programs

example || description | primitives | # prim. |
Bruening’s SplitSync || two threads access shared | synchronized 2
variable
CS193k ReaderWriter || two reader and two writer | synchronized, 4
threads wait/notify
CS193k TurnDemo two threads synchronize using | synchronized, 6
a semaphore wait /notify
NASA’s classic two threads communicate us- | synchronized, 4
ing events (deadlocks) wait /notify
NASA’s ksu_pipe 2-stage pipeline synchronized, 4
wait/notify
Table 2: Results on example programs
state
example algorithm states rules time | reduction
Bruening’s SplitSync noatomic 1763 4090 1.0
lockunlock 57 77 53.1
unlock 37 43 95.1
(CS193k ReaderWriter || noatomic | 261838 1030130 442s 1.0
lockunlock 848 2184 1.91s 309
unlock 528 1356 1.54s 496
CS193k TurnDemo noatomic 26 145 68715 30.4s 1.0
lockunlock 385 617 2.57s 67.9
unlock 166 236 2.40s 158
NASA’s classic noatomic 45924 118047 46.6s 1.0
lockunlock 322 554 2.38s 143
unlock 143 234 2.11s 321
NASA’s ksu_pipe noatomic | 3990883 | 14022723 | 6401s 1.0
lockunlock | 28357 92334 51.5s 141
unlock 4991 15762 11.8s 800




to research the ways that different analysis tools
interface and interact with each other.
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Abstract

Several efforts have been made recently towards practi-
cal source code model checking. This paper deals with
a related problem that up to now has not yet been
solved completely, namely the integration of LTL prop-
erty specifications into object oriented source code. We
present a notation that can be used for this purpose,
and a sketch of the way a formal semantics can be as-
signed to such notation. We also address the problem
of incorporating the specification pattern concept in our
notation.

Keywords
Finite-state verification, temporal logic, Java.

1 Introduction

Thanks to the recent advances in tool support, model
checking can now be applied with interesting results to
the verification of non-trivial software systems. How-
ever, a number of problems still make the integration
of model checking into the software development pro-
cess quite slow. A first reason is that direct translation
of programs written in high level languages into formal
models usually yields excessively large models that can-
not be approached with model checking. Some work has
already been done in order to alleviate the above men-
tioned problem using various reduction techniques such
as program slicing and abstraction-based specialization.
Initially, the main focus was on the analysis of Ada pro-
grams, whereas more recently Java programs are being
considered as well [1, 2, 6].

A second important problem that still remains is the
fact that the specification of software requirements is
not yet well integrated in common environments pro-
grammers are used to. More precisely, problems arise
due the fact that the languages used for writing pro-
grams differ from those used for requirements specifica-
tion, the latter being far more abstract and difficult to
understand.

This paper addresses the latter problem specifically and
outlines a possible solution based on a notation to spec-
ify properties within Java source code, in respect to the
above considerations, i.e. a notation that can be well

Riccardo Sisto
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corso Duca degli Abruzzi 24,
10129 Torino, Italia
+39 011 564 7073
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integrated in conventional object oriented software de-
velopment. Such properties can then be verified using
model checking. Our research focuses on Java programs,
but the methodology could be extended to a large class
of object oriented languages.

The paper is organized as follows: Section 2 describes
the notation we use to write properties, Section 3 ex-
plains their semantics and Section 4 deals with specifica-
tion patterns. Finally, Section 5 draws some conclusions
and announces future work. The reader is assumed to
have a basic familiarity with Java.

2 Specification Notation
Before illustrating the notation for specifying proper-
ties, it is worth making some preliminary considerations.

First of all, it is important to distinguish between source
code and binary code verification. The former involves
verification of properties associated with the program
source code without requiring the compilation of the
program, while the latter regards verification of already
compiled code. In this paper we deal only with source
code verification because it can be integrated into the
software development process more easily and facilitates
the programmer in specifying correctness requirements,
since such requirements can be associated directly with
the high-level program elements manipulated by the
programmer, such as packages, classes and methods.

Another issue to be considered is that in many instances
it is useful to verify properties associated with single
classes or packages independently of the way they will
actually be used. This is especially the case when dis-
tributed systems are considered, because in such sys-
tems server objects are made available to unknown
clients which will eventually be developed later on. The
verification of servers may be done having only an ab-
stract specification of the client behavior. The need
of verifying partially specified systems has already been
recognized by other researchers, as reported in [5]. Here
this need is addressed considering both properties re-
lated to the whole program and properties related to
single classes of objects. For what concerns the latter,
we also take into consideration the fact that the develop-



ment of object oriented (OO) software distinguishes be-
tween two programming roles: the developer role, which
consists of implementing new classes that will be made
available to other parties, and the user role, which con-
sists of using already existing classes, without caring
about how they are implemented. Consequently, it can
be useful to divide the properties that can be expressed
about a single class into two distinct subsets, according
to the point of view under which they are formulated:

e interface properties, which are requirements that
can be expressed by the class user and involve only
interface elements (method invocations).

e implementation properties, which are requirements
that can be expressed by the class developer and
may also involve implementation details (class at-
tributes).

A final preliminary discussion point regards the diffi-
culty generally found in formalizing software properties
expressed in a temporal logic language. To alleviate this
problem, an important step ahead has been made in-
troducing the concept of specification pattern [4] which
is a mapping between properties expressed in natural
language and temporal logic formulae. However, even
if natural language properties are easy to understand,
difficulties occur when they have to be applied in the
context of a source code program.

Our notation has been defined taking this problem into
consideration. We adopt the specification pattern con-
cept and, in section 4 we discuss a possible way to inte-
grate specification patterns into our notation.

As already explained, we have chosen to insert LTL for-
mulae directly into the source code of the program as
special annotation comments. Our choice was driven
also by the need to use the same source file in both
compilation and verification, without further modifica-
tions. In this way, properties become integral part of the
source code of packages and classes, and are naturally
carried with it. Each one of the following annotation
forms can be used to specify a property:

/*@ property_specification */
//@ property_specification

A property has the following formal syntax:

property_specification ::=
PROPERTY NAME = [quantifier] 1tl_formula

quantifier ::=
(FORALL |EXISTS) declarations [(predicate)]

The upper-case symbols denote terminals, while the
lower-case ones are non-terminal symbols. The sym-
bols enclosed in square braces are optional. The
declarations symbol introduces a number of vari-
ables that range over the quantification domain, tak-
ing the classical Java form of a variable declaration list.
The predicate symbol denotes a Java boolean expres-
sion used to restrict the quantification domain. An
1tl formula is obtained from any number of atomic
propositions connected with the standard LTL opera-
tors. These include the temporal operators (<>, [1, U,
o), the standard boolean operators and the implication
operator =>). The LTL composition rules apply here,
such that, if P and Q are formulae, then <>P, [1P and P
U Q etc. are also formulae.

Generally, we consider that properties annotated within
the source code of a program are subordinated to the
same scoping rules as any other language construct.
That is, a property can only refer to the entities that
are visible in its most enclosing scope. At the moment
we are taking into consideration two kinds of scope: the
package and the class scope. The package scope con-
tains all classes and interfaces declared in the current
package and the ones declared public in other packages.
The class scope contains all fields, methods and inner
classes declared in the current class or interface, along
with the ones declared in other classes and packages
that are visible in the current class. Properties declared
inside a package scope but outside any class scope are
denoted in what follows as package properties. Proper-
ties declared inside a class scope but outside any method
declaration are denoted as class properties.

The interpretation of package and class properties is
quite different, because a package property is an LTL
formula related to the evolution of the global program
state, whereas a class property applies to the evolution
of the state of each instance of the class it refers to.

Let us now define the atomic propositions that can be
used to build the various kinds of LTL properties. For
package properties, atomic propositions take the form
of boolean expressions involving static attributes of the
package classes. For class properties instead, we con-
sider separately interface and implementation proper-
ties.

The specification of interface properties makes use of
the following two atomic propositions related to the oc-
currence of method call and return events:

e calling(m [, argument_list])

e returns(m [, argument_list] [, x])

where square brackets indicate optional fields.



Predicate calling(m [, argument_list]) is true in
all object states where some call to method m with ac-
tual arguments argument_list is being executed. If
method m does not have arguments, the argument list
is void. In practice, this atomic proposition becomes
true in the evolution of a class instance whenever a call
to method m with actual arguments argument_list is
issued on that instance, and it remains true until the
corresponding method execution terminates. Of course,
in a concurrent environment it is possible to have time-
overlapping executions of m, in which case the predicate
remains true until the current number of concurrent ex-
ecutions of m with actual arguments argument_list
reduces to 0.

Predicate returns(m [, argument_list] [, x]) is
true in a certain object state provided that the last
interface event occurred in the object is the return of
value x from a call to method m with actual arguments
argument_list. As with the previous predicate, the ar-
gument list and the return value can be missing (e.g., if
m does not have arguments, and it does not return any
value), returns(m) is true if the last event occurred in
the object interface is a return from m.

The specification of implementation properties can use
the same atomic propositions defined for interface prop-
erties, as well as additional properties related to the
class implementation. Generally, every boolean expres-
sion which is legal in Java is also an atomic proposition.
The evaluation of an atomic proposition must complete
normally and cannot have side effects.

In addition to boolean expressions, three special atomic
propositions are introduced, in order to represent infor-
mation about the program control flow [9]:

e at(1l) is defined for a program label 1; this propo-
sition is true in a certain program state if there is
an active thread whose current control location is

L.

e nextT(1) is defined for program label 1; this propo-
sition is true in a certain program state if the next
state is obtained by executing the program state-
ment labeled by 1.

e nextP(t) is defined for a program variable t which
is a reference to a thread object; this proposition is
true in some state if a program statement executed
by the thread referred to by t leads to the next
state.

An example of a syntactically valid interface property
specification is:

class C {

/*Q
property neverGetNegative =
forall int x (x < 0) [](!returns(get, x))
*/
int get() { ... }
b

The specification of class properties is inherently object
oriented. They are automatically inherited via subtyp-
ing, as a consequence of the fact that instances of a sub-
class are also instances of its superclasses, therefore all
properties that apply to a superclass should also apply
to its subclasses.

3 Property Semantics and Validation

Writing temporal logic properties in terms of source pro-
gram expressions in the notation introduced in section
2 has an intuitive meaning related to the common un-
derstanding of language constructs. Nevertheless, as
these properties must be verified formally, their seman-

tics must be expressed in a formal way.

The formal understanding of the property language in-
troduced in Section 2 is tightly related to the execu-
tion semantics of a Java program. We have already de-
veloped a detailed behavioral model of Java programs
based on labeled transition systems (LTS), which is pre-
sented in [7]. Automatic translation of the Java source
code into this model is currently being implemented.

Here we focus on class properties because the interpre-
tation of package properties is straightforward and quite
standard. Since class properties are related to the evo-
lution of class instances, their interpretation can be de-
fined with respect to a LTS model representing a class
instance evolution. It is worth noting that the level of
abstraction needed for such LTS model depends on the
kind of class property considered. The abstraction level
needed for interface properties is higher than the one
needed for implementation properties, which is an ob-
vious consequence of the way these properties were de-
fined in Section 2. An interface property involves only
method call and return events, while an implementa-
tion property refers also to the state of object fields,
static fields and synchronization monitors implicitly as-
sociated with objects.

According to the above considerations, we have defined
two distinct LTS models, one for defining the semantics
of implementation properties and the other one for in-
terface properties. Let us call them LTSm and LTSn,
respectively. In LTSm, a state is explicitly composed of
all information regarding the individual state of the ob-
ject, including its associated synchronization monitor.
A transition in LTSm is fired by the execution of a pro-
gram statement. In LTSn instead, a state is represented
as the ordered set of method call and return events that



have occurred in the past in the object interface. A tran-
sition of LTSn is fired by a method call/return event.
In practice, LTSm is a refinement of LTSn, in the sense
that each state in LTSn (interface state) corresponds to
a sequence of states in LTSm (implementation states).
For example, an interface state in which atomic propo-
sition calling(m) is true corresponds to a sequence of
implementation states representing intermediate steps
in the execution of m. A complete formalization of the
interface and implementation LTS models is presented
in [8]. It is easy to see that, as interface and imple-
mentation properties can be interpreted on LTS models,
they can also be translated into a model checker input
language (e.g., PROMELA never-claims).

This kind of relationship between LTSm and LTSn
makes it possible to interpret interface properties both
on LTSn and on LTSm. Of course, it is important that
the truth value of an interface property P is the same
for an execution path of LTSn and for the corresponding
path of LTSm, because in this case we can claim that
P holds in LTSn iff it holds in LTSm and vice-versa.
An LTL formula is closed under stuttering if its truth
value is not affected by the addition/deletion of stut-
tering steps in the execution path on which it is evalu-
ated, where a stuttering step is one which does not alter
the truth value of the atomic propositions occurring in
the formula. We claim that the implementation states
corresponding to an interface state are stuttering steps
with respect to interface properties. As a consequence,
the interpretation of interface formulae that are closed
under stuttering is the same in LTSm and in LTSn. A
formal proof is given in [8].

This claim is useful in order to validate interface proper-
ties using model checking. Informally, we consider that
an interface property is validated if it holds in every
implementation of the interface. For example, in the
following Java code:

import java.util.Vector;
import java.util.LinkedList;

interface Stack {
void push(int info);
int pop();

/*Q
property Consistency =
forall int x, y, z (x != y)
(returns(push,x) U (!returns(push,y)
U returns(pop,z))) -> x == z
*/
}

class VectorStack implements Stack {

Vector data = new Vector();

int top;

public synchronized void push(int info) {
data.add(top ++, new Integer(info));

}

public synchronized int pop() {
Object info = data.remove(-- top);
return ((Integer) info).intValue();

}

}

class ListStack implements Stack {
LinkedList data = new LinkedList();
public void push(int info) {
data.addFirst(new Integer(info));
}
public int pop() {
Object info = data.getFirst();
return ((Integer) info).intValue();
}
}

the interface property Consistency informally says that
if a push(x) is followed by a pop() with no interme-
diate other push(y), then the return value of pop()
is x. The property is automatically inherited by the
VectorStack and ListStack classes. Its validation re-
duces to the validation of both implementation prop-
erties in the two implementing classes. It can be eas-
ily seen that the VectorStack implementation respects
the property because both push and pop are synchro-
nized, preventing for concurrent thread access to the
stack data. On the contrary, the ListStack implemen-
tation violates the property in concurrent access. Let
us consider two separate threads, t1 and t2, each one
performing pushes and pops on the same instance of the
class ListStack. If t1 has pushed the value x and its
call to push returns and if, afterwards, t2 pushes the
value y but, before its call to push returns, t1 issues a
call to pop which returns before the second call to push,
then the returned valued is y, instead of x.

If in the future other classes will be defined by special-
ization from the Stack interface, they will also inherit
the Stack interface properties, which will have to be
verified.

As already mentioned, the validation of an implementa-
tion property P specified within a class reduces to the
validation of P in every class instance. We call the latter
an instance property. The truth of an instance property
is defined on execution sequences in LTSm starting with
the state in which the instance is actually created. Al-
though in Java objects may be garbage collected, we
consider for simplicity that their life does never stop
(when they are no longer referenced, their state can be



assumed to remain unchanged forever).

To conclude, the validation of interface and implemen-
tation properties follows a top-down model. An inter-
face property holds if every corresponding implementa-
tion property holds, while an implementation property
must hold for every instantiation of the class. As men-
tioned before, using existent model checker tools (e.g.,
SPIN) to verify program properties is possible because
the model checkers input languages (e.g., PROMELA)
essentially describe labeled transition systems.

In practice, we approach the verification problem
bottom-up. As model checking deals with actual pro-
gram states, it can be used to check instance properties,
one at the time. When all instances of a class are proven
to satisfy a property, we say that a class property is
satisfied. Furthermore, if all implementing classes are
proven to satisfy an interface property, then the inter-
face property holds.

Using model checking, one can decide if an LTL formula
holds for a system, given that the system state space is
finite. For the moment, we formally proved that the
finiteness of the program state space is also a sufficient
condition for the decidability of class properties quan-
tified over finite domains. However, more work has to
be done in order to make the decision procedure cost
effective. Even if finite, quantification domains can still
be large enough to make the decision very expensive in
time and space. This problem can be overcome using
program abstraction techniques [1], and is considered as
further work.

An important problem faced by existent verification
tools is the lack of underlying support for dynamic
memory management and polymorphism (i.e., dynamic
method dispatch). In order to alleviate this problem, we
have extended the model checker SPIN, providing effi-
cient embedded support for the modeling of dynamic
run-time information [3].

4 Specification Patterns

The specification of behavior properties expressed in
LTL is generally considered a difficult task. Even sim-
ple properties can be erroneously formalized, which may
lead to spurious error reports, while real errors could be
neglected. As mentioned in Section 2, the concept of
specification pattern was introduced in order to facili-
tate properties specification. In this section we explore
the possibility of encapsulating specification patterns
into Java interfaces and applying them to an existing
source code program by means of inheritance.

Let us first note that a specification pattern is al-
ways parameterized with respect to a number of atomic
propositions or events. In our state-based model, any
observable state change is considered to be an event.

The meaning of ”observable” is however application de-
pendent. Introducing a general observability criterion
may greatly increase the size of our model, therefore we
chose to leave this task to the implementor by introduc-
ing the concept of probe methods. A method M is a
probe method if:

e during its execution the state of the object does not
change in an observable way, from the user point of
view;

e the execution of M does not block the calling
thread, not even temporarily, nor it completes
abruptly by throwing an exception.

Ideally, the execution of a probe method is performed
without interleaving with other threads. In practice, a
probe method is a way to get some state information
out of an object without interfering with its behavior.
A probe method which returns a boolean value may be
used to trigger an event. A specification pattern can
be introduced by means of an interface which declares
a number of probe methods. For example:

interface Response {
boolean P();
boolean S();

//@ property Response = [J(P() -> <> S())
¥

introduces the pattern of response. The pattern’s in-
formal intent is to describe the cause-effect relationship
between event P() and event S(). In order to apply
this pattern to an already existing class, the implemen-
tor must first make it inherit from the pattern interface
and consequently, implement the P() and S() methods
according to the actual events. Let us consider the fol-
lowing class implementing a dialog box with an edit
field. The actual requirement is that every read op-
eration must be followed by a write operation.

class EditDialog implements Response {
protected EditField editField;
protected TextField textField;

String info;

void readText()
{ info = editField.getText();
p = true; p = false;

X

void writeText()
{ s = true; s = false;



textField.putText(info);
}

// P() probe method implementation
private boolean p = false;
boolean P() { return p; }

// S() probe method implementation
private boolean s = false;
boolean S() { return s; }

In this example the probe methods are P() and S(). In
order to trigger the method invocation events, we use
the boolean variables p and s. In this particular case,
the observable state of an EditDialog object from the
response pattern’s point of view is given only by the
pair of boolean values (p, s).

5 Conclusions and Future Work

The notation introduced in this paper to specify prop-
erties associated with Java classes and packages con-
tributes to the elimination of the gap between formal
specification languages and programming languages,
without sacrificing the accuracy of formal reasoning. In
particular, the notation is integrated into the object ori-
ented paradigm, which makes it easy to understand by
programmers.

We plan to continue the work presented here in vari-
ous ways. First, we intend to define the meaning of
properties expressed in terms of method local variables.
Another further direction regards the possibility of com-
bining interface property patterns in order to create a
flexible specification system.

Finally, computational support has to be provided for
our notation that is, a software tool able to automati-
cally check properties annotated within the source code
of the program.
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Abstract

Finite state verification (FSV) and testing are usually
viewed as competing approaches to software validation.
In this short paper, we propose a technique for combin-
ing FSV synergistically with testing, with the goal of
identifying faults more quickly and with less manual ef-
fort than with FSV alone and more effectively than with
testing alone. We propose using information about po-
tential faults obtained during the FSV analysis to direct
selection, execution, and checking of test data, with the
intent of confirming these faults.

1 Introduction

In finite state verification, a finite model of the system
is constructed, usually abstracting away many details,
and the FSV tool (verifier) explores the state space to
determine whether a given property P holds. The model
is constructed in such a way that if the verifier deter-
mines that P holds for the model, then P also holds for
all possible executions (and hence, for all possible test
data) of the actual system. In this case, there is no need
to test the system for the behaviors captured by P. On
the other hand, if the verifier finds a violation of P, it
may or may not reflect a property violation in the ac-
tual system. Such violation is spurious if no violation-
revealing path through the system model corresponds
to a feasible execution of the system. Normally, given a
representation of the property violation on the model,
the human analyst (or simply analyst hereafter) has to
decide whether this violation appears spurious, in which
case the analyst has to refine the system model, provid-
ing more detail, and then re-run the verifier. The addi-
tional details may allow the verifier to determine that
P is always satisfied or there may still be a violation.
In the latter case, the process continues.

This incremental approach to FSV has several weak-
nesses related to the presence of human factor in the
verification process. First, this approach relies on the
analyst to decide whether a property violation found by
the verifier is spurious or not, which is time-consuming
and error-prone. Second, the analyst can only review

*Supported in part by NSF Grant CCR-9870270.

one property violation at a time, while our technique
can use information about all found violations at the
same time. Finally, if a violation appears feasible, it is
important to analyze a real execution of the system that
results in this violation, so that the error in the system
can be found and removed. Unfortunately, debugging
cannot be used until the analyst manually identifies test
data that are likely to produce such an execution.

Our proposed technique uses testing, along with
model refinement, to address these weaknesses. When a,
property violation is found by the verifier, the following
steps are performed in parallel:

e An automated testing tool uses information devel-
oped during the FSV analysis to direct selection,
execution, and checking of test data, with the hope
of finding data that shows the violation to be real,
and

e The analyst refines the model and re-starts the ver-
ifier. Note that the analyst only needs to pick a
reasonably important aspect of the system to be
modeled during the next run of the verifier, with-
out having to worry about whether the violation is
spurious.

If the violation is real, testing will sometimes be able to
find test data that exhibits this violation in the system.
In this case, the parallel FSV session can be stopped
and a debugging session with the found test data can
be started. If the violation is spurious, thorough testing
of relevant parts of the system may help increase confi-
dence that such is the case, but, of course, will never be
able to prove it. The gain in this case is that the analyst
is able to start a new, more precise, verification session
promptly, which helps to speed up the overall process
of FSV. Thus, from the point of view of the FSV ana-
lyst, this approach saves some manual work; from the
point of view of the tester, this approach helps direct
testing effort toward execution paths that are at risk of
violating the specification.

In the remainder of this paper, we refine these ideas
further, illustrating with a simple example. Section 2
summarizes relevant background on FSV and testing,
Section 3 illustrates the technique and discusses some
of the issues, and Section 4 concludes.



2 Background

2.1 Background on finite state verifica-
tion

Conceptually, many FSV approaches represent the sys-
tem under analysis as a collection of states in which this
system can be during its executions and transitions con-
necting these states. This construct may be created ex-
plicitly (e.g. [4,6,12]) or implicitly (e.g. [9,15]). For sim-
plicity, in this paper we use an explicit representation of
the state space, although the proposed techniques can
be extended for implicit representations.

Consider the example in Figure 1. The two threads
of control, T1 and T2, that comprise this system are
represented as FSAs in Figure 1(a). State 0 is the start
state in both FSAs. The states representing termination
of the threads are indicated with double circles. The
transitions between the states are labeled with events
in the threads to which they correspond. For exam-
ple, the transition from state 1 to state 2 of thread T1,
labeled start T2, represents thread T1 starting thread
T2. Events a and b represent some events in the threads
that are relevant to the property. Square brackets that
follow some events represent conditions on when the
event is executed. For example, state 2 of thread T1
represents this thread before executing an if statement
with predicate x > 0. Event a appears on the branch of
this if statement that is executed when the predicate
evaluates to true. 7 denotes an empty event, represent-
ing absence of any events. For example, the T-based
transition from state 2 to state 3 of thread T1 means
that nothing of interest happens on the branch of the
if statement that is executed when x < 0. Note that
we assume that x is a shared variable that is an input
to thread T1 and is not changed by either T1 or T2.

Formally, we can represent an FSA as a tuple
(S, s0,%,T), where S is the set of states, sq is a unique
start state, X is the set of events, and T is the set of
transitions. We use the notation s; — sy to represent
a transition based on event e € ¥ from state s; € S
to state so € S. A path through an FSA on an event
sequence eq,...,e, from ¥ is a sequence of transitions
So i) S1 2) i) Sn.

In this paper, we assume that FSA-based models of
the threads of control are derived from the source code
for the system. While construction of models based on
high-level descriptions is attractive and has been advo-
cated for FSV [11], since testing is used in our approach,
we need a direct mapping between the thread models
and the executable code for the system.

A property about a software system is a representa-
tion of either desirable or undesirable behavior of this
system. We define properties in terms of the events ob-
served in the system, using FSAs with a special violation
state v. The violation state is a sink: Ve € ¥p,v = v.
A property is violated on an execution that corresponds
to the event sequence p = eg, €1, ..., if the path through
the property FSA on this sequence ends in the violation
state.

Figure 1(b) shows a property specifying that on no
execution of the system can event b be observed if by
that time event a has been observed an odd number of
times. For example, the sequence of events a, a, a, b
corresponds to the path 0 1 30 3 1 LN v, and So
violates this property. Note that events other than a
and b do not affect this property, which means that if,
for example, event start T2 is contained in a sequence
of events, it does not change the current state of the
property.

A reachability graph represents all reachable states
of the system, to the extent that this system is mod-
eled by the FSV technique of choice. In our example,
each thread of control in the system is modeled with an
FSA, so a state of the system can be represented as an
ordered collection of FSA states, one for each thread.
The reachability graph is a cross-product of the FSAs
for all threads. Figure 1(c) contains the reachability
graph for our example.

Paths through the reachability graph represent exe-
cutions of the system. A path in the reachability graph
is executable if it corresponds to a real execution of the
system. All other paths are spurious. If there is a path
from the start state of the reachability graph to some
state s, such that the property is violated on this path,
s is called a wviolation state.

Many FSV approaches are capable of checking two
general kinds of properties, safety and liveness. Safety
properties are always finitely refutable and liveness
properties are never finitely refutable [1]. The approach
proposed in this paper deals only with safety properties,
since the infinite nature of liveness properties means
that an execution that represents a violation of a live-
ness property is infinite and thus cannot be reasoned
about using testing techniques!.

The goal of our approach is to combine FSV and test-
ing to either prove, with respect to a given property,
that no violation states exist in the reachability graph
or to find an executable path from the start state to a
violation state of the reachability graph.

2.2 Background on Testing

Whereas FSV primarily aims to prove that the speci-
fication is satisfied, testing aims to find faults, i.e., to
demonstrate that the specification is not satisfied. To
test a piece of software, one selects test cases from the
input domain, executes the software on each test case,
and checks whether the results satisfy the specification.
In addition, one might monitor which path through the
program is executed by each test case (or other aspects
of the execution that are not immediately observable) or
might attempt to force execution of a particular path.
Many testing techniques involve analyzing the con-
trol flow (and/or data flow) of the program then requir-
ing the test data to execute representatives of certain

1n addition to safety and liveness properties, there are prop-
erties that are neither safety nor liveness, but any such property
can be represented as a conjunction of a safety property and a
liveness property [2]
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input x a[ x>0] [ x<=0]
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start T2 b
(2) © =
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;

(a) FSAs for the threads of control

(b) Property

input x

(c) Reachability graph

Figure 1: A reachability graph-based example

classes of program paths. These techniques were origi-
nally developed for testing sequential programs but can
be extended to testing concurrent programs [13,18,19].
Testing criteria of this nature often result in a large
number of test requirements, even for moderate-sized
sequential programs. For concurrent programs, the ex-
plosion in the size of the state space makes this problem
even more severe. Thus, the tester needs guidelines for
selecting portions of the state space that should be ex-
plored. In the proposed technique, those guidelines are
supplied through interaction with FSV.

One of the most difficult aspects of testing is the or-
acle problem, i.e., the problem of determining whether
the result of a particular test case satisfies the specifica-
tion. The use of formal specifications can significantly
alleviate this problem, by allowing test results to be
checked automatically [17]. In particular, techniques
have been developed for automatically generating test
oracles from specifications written in temporal logics, as
are commonly used in FSV [7,8,16].

In testing and debugging concurrent programs, spe-
cial problems arise due to non-determinism. A given
test case may expose a fault on some executions, but
not expose it on others, due to differences in the in-
terleavings of statements from different processes. If
executing test case t does not expose a fault, it may
be useful to re-execute it many times to check differ-
ent interleavings. If executing test case ¢ does expose a
fault, it may be difficult to reproduce the interleaving
in order to debug the program. In order to deal with
these issues, testing environments for concurrent pro-

grams have been proposed in which the interleaving of
processes is monitored or controlled [3].

3 Using Property Violations to
Guide Testing

When the finite state verifier finds a property violation,
we would like to use this information to guide testing.
There are two ways in which we would like to guide
testing of concurrent systems, by choosing appropriate
test data and by choosing scheduling of relative exe-
cution of the threads in cases where they can execute
independently from each other. The former is a general
problem of testing methods and the latter is specific to
concurrent systems. In this section we describe several
different approaches to using information produced by
reachability analysis to guide testing-based search for
property violations.

3.1 Choosing Thread Scheduling

We will assume that our testing approach has instru-
mentation that lets us at any point to force execution of
the current instruction from any of the threads that are
not blocked. (Such instrumentation can be either em-
bedded in the run-time execution environment or done
on the source code level, similar to [3].) We use informa-
tion about the violation states in the reachability graph
to force testing to exercise those thread interleavings
that improve chances of finding a real execution. To



this end, we introduce the notion of interleaving selec-
tion criterion ISC as a predicate defined on the set of
all transitions in the reachability graph. This criterion
evaluates to true if the transition should be explored,
if possible, during testing and false if the preceding run
of the verifier does not indicate that taking this tran-
sition can lead to a violation state. During testing, we
apply this criterion to all transitions that correspond to
thread interleavings that can be taken from the current
state. If multiple transitions may be taken, according to
the criterion, the testing tool will pick one of them and
thus drive execution of the test case. If no transition
from the current state of the reachability graph can be
found that satisfies the criterion, the testing tool will
backtrack to an earlier point in the execution and pick
an alternative interleaving.

There are two different forms in which verifiers can
return information about property violations. One of
them is a set of violation states in the reachability graph
and the other is a set of paths to some violation states in
the reachability graph. Suppose first that V' is the set of
violation states returned by FSV. An intuitive criterion
based on this set is

false if Vo € V,v is not reachable

from s»

ISCV(Sl ﬂ) 82) =

true otherwise.

Consider Figure 1(c) and violation state (2,2) found
by the verifier used. Suppose that the value of x was
randomly chosen to be 5 when executing code corre-
sponding to the transition between states (0,0) and
(1,0). Consider the point during program execution
immediately after thread T2 has been started by thread
T1, which corresponds to state (2,0) of the reachability
graph. In this state, the two threads may be executed
in parallel, and so different event interleavings are pos-
sible. One possibility is to execute the if statement
of T1, which means event a, because of our choice of
value of x. This corresponds to the transition to state
(3,0) of the reachability graph. Since the violation state
(2,2) is not reachable from (3,0), this interleaving will
not lead to the violation found by the FSV session, and
so will not be taken during testing. The other possible
interleaving at state (2,0) is to execute the if state-
ment in thread T2, which corresponds to the transition
on a from (2,0) to (2,1). Similarly, out of two possible
interleavings at state (2,1), the testing run will choose
executing the code corresponding to event b in T2. At
this point, we have detected a violation of the property
with testing.

Many verifiers are capable of returning a path or a
set of paths to some violation states in the reachability
graph. Suppose that W is such a set of paths. An

intuitive criterion based on this set is
ISCW(Sl i) 82) =

false if Vw € W,w'(s; - s2) is not a prefix of w,
where w' is a path traversed up to state s;
true otherwise

This criterion stipulates that a transition should not
be explored if it cannot lead to execution of a path
in W. Assume that the verifier returned a violation
path (0,0) 222 % (1 g) St T2 (9 o) 220 9 4y By
(2,2). Consider a point of the program execution cor-
responding to state (2,0) of the reachability graph. If
the if statement of T1 is executed at this point, this
path will not be followed, and so the testing tool has to
execute the if statement of T2.

Intuitively, ISC'y is stronger than ISC'y in the sense
that following a violation path during testing (if it is
feasible and test data are adequate) always leads to a
violation of the property, while entering a violation state
does not necessarily represent a violation, because the
path taken to this violation state during testing may
be different from any of the paths that represent the
violation.

There may be situations in which ISC'y is preferable
and situations in which ISCy is preferable. State (3, 2)

of the reachability graph is a violation state, since the

graph contains the path (0,0) ot % (1,0) Start 2,

(2,0) 222% (9. 1) 70 (3 4y B (3,9) that violates
the property. (There is also another violation path to
this violation state.) Suppose first that we use this vio-
lation path in the interleaving selection criterion. Since
this path is spurious, no choice of test data will exercise
it. Thus, on each test case, the testing tool will stop
execution because the given path cannot be exercised,
even though these test cases could potentially execute a
different violation. Now suppose that we use violation
state (3,2) in the testing criterion. Even though none
of the violation paths to this state are feasible, testing
could still find a violation by examining a real violation

input X

path (0,0) y (1,0) 222812 o gy 22009 4y By
(2,2). Note that this path leads to a different violation
state, (2,2), but ISCy permits that, because state (3, 2)
is reachable from (2, 2).

Alternatively, suppose that our testing criterion is
based on the violation state (2,2). Suppose that the
value of x used in our test is negative. In this case,

path (0,0) (1,0) 22782 (9 ) TXS0 (9 4y b
(2,2) can be taken. Even though the violation state is
reached, testing did not find a violation of the property,
because at the end of this path the property is in state
1, which is not a violation state. If, instead of a vio-

input x

lation state, the verifier returns the path (0,0) —22° %
(1’ 0) start T2 (2; 0) a[x>0]> (2’ ]_) i) (2, 2), testing with

a negative value of x will be stopped early, at state

(2,0), because transition (2,0) 2lx>0l, (2,1) cannot be
taken.



i nput x>0 ™

Figure 2: The reachability graph modeling variable x

3.2 Choosing Test Data

Consider the problem of choosing appropriate test data.
In general, choosing input data to follow a path through
the reachability graph in such a way that it correlates
with the values of modeled variables is undecidable. In
practice, it may be possible to use symbolic execution [5]
or some heuristics [10,14] or to use random test data,
aborting those executions that are not exploring the
part of the reachability graph of that is of interest. In
this section we propose an approach for choosing values
of variables that are modeled by the verifier.

Many FSV approaches are capable of modeling sys-
tem variables and including them in the analysis. In
this case information about these variables (either the
actual values or approximations, such as sets or inter-
vals of values) can be used by testing to choose input
data for this variable. For example, behaviors of vari-
able x in our example in Figure 1 can be modeled by
including the sign of x in the states of the reachability
graph, as shown in Figure 2. Each state in this reacha-
bility graph is labeled (s1, s2,7), where s is the state of
thread T1 from Figure 1(a), so is the state of thread T2,
and r is the range of values of variable x. In this exam-
ple we consider only three possible ranges, x > 0, x < 0,
and all, which denotes all possible values of x (the lat-
ter appears only in the start state of the reachability
graph).

Suppose that we use violation state (2,2, x > 0) found
by FSV to drive testing. The simplest approach in this
case is to use the range x > 0 in test data selection, since
we can perform an additional static analysis and detect
that, once selected, the value of x does not change in
this program.? This choice is even easier if path-based
test criterion is used, because it is only the range of
values of x that appears in the states along this path
that has to be analyzed.

21f x is redefined, the problem can be much more difficult.

Session 1

FSV run Pid Testing run

“~~JFounda
violation

Useviolation previous
info to guide test
testing cases
Use the previous
. violation to guide
Additional ¢
information .
Session 2

Testing run

Found a N Fm:g[da
violation violation

Session 3

Figure 3: The proposed process of simultaneous use of
FSV and testing

Modeling variables in this way in the reachability
graph can help not only in selecting test data, but also in
quickly discarding test data that are not likely to lead to

violation. For example, if a negative value of x is chosen
H o . i <0
for testing, then after transition (0,0,all) input x<

(1,0,x < 0) in the reachability graph in Figure 2 is
taken during testing, we can stop execution of the test,
because none of the violation states in the reachability
graph are reachable from state (1,0,x < 0).

4 Conclusion

We have proposed a technique for using testing and fi-
nite state verification synergistically in the attempt to
verify or disprove properties of concurrent systems. The
process for applying this technique is illustrated in Fig-
ure 3. In our approach, testing and model refinement
are both used to explore violations returned by the veri-
fier, in order to determine whether those violations rep-
resent, real executions or are spurious. Information re-
turned by the verifier describing violation states and/or
paths to those states is used to guide testing. Test cases
are run in an environment where interleavings can be
controlled and where executions can be aborted if it is
determined that they will not be able to reach given
violation states or execute a given paths to violation
states.

This approach may offer a more efficient way to deter-
mine whether a violation is spurious than model refine-
ment alone. In addition, finding test data that causes
a property violation can be useful for identifying and
removing the fault. We plan to implement our ap-



proach and to carry out experiments aimed at deter-
mining whether it is indeed useful.
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. To tackle this problem, we propose the concept of
1 Introduction a test bench for program families which is adapted to
Testing is one of the most important activities ina particular program family. Comparable to test
the software development process. Only a thoroughlpenches from other engineering areas, e.g. for en-
tested program will possibly fulfill the user's expec- gines in automotive engineering, the test bench auto-
tations. Even a systematic and careful developmenhates testing the common parts of a program family.
process can not prevent the need for final testing, seRurthermore the test bench can be extended for the
for example [Dyer 1992]. Consequently a product hagequirements of a particular program variant. This test
to pass through an appropriate and carefully plannedench itself is based on a test bench framework, see
test, before it is released to the public. figure 1, containing the essential infrastructure for
Test Automation has the benefit that test casesest automation. To adapt this test bench framework
once developed, can be reused in an eventual regre®-the program family under test, test cases, which are
sion test. On one hand, this is essential during producipecific for the program family, have to be imple-
maintenance, when corrections or changes have begnented on top of this framework.
made and developers have to verify that nothing else
was broken. On the other hand test automation is Program
useful for testing program families which are recently Variant A
gaining importance in form of product lines [Weiss & o
Lai 1999]. / \ Partaf Tou Bonch

Program Program
Variant B Variant C

Program
Variant A

2 Framework Test Bench

Program families, as defined by [Parnas 1976], R
are a set of programs, where it is worthwhile to first Varant b
study their common properties, before determining Program
the special properties of the individual family mem- Iva"'amD
bers, also called program va_riants. In other wor(_js, the Figure 1 Program Family without/with Test Bench
members of a program family share the same imple-
mentation core, but actually represent program vari- Because the common properties of a program
ants for e.g. different platforms, application areas andariant are implemented using framework technol-
customers. ogy, technically the test bench is adapted to the do-

Object-oriented frameworks are an ideal meangnain-specific framework beneath the program family.
for developing program families. Actually an object- In fact a framework specific test bench is realised. If
oriented framework represents an "abstract design@ program family is based on more than one domain
[Johnson & Foote 1988]. It comprises many desigrframework, their test benches can be combined, as-
decisions and can be extended into a complete applsuming they are based on the same test bench frame-
cation. Today many projects use object-orientedVork.
framework technology for the development of pro- Because the test bench concept dramatically im-
gram families, see for example [Baumer et al. 1997]. proves reuse of test cases, it allows thorough regres-

While the use of framework technology increasession testing what is important for program families
productivity, testing the individual members of a and frameworks. Actually a test bench serves two
program family remains laborious. So individual purposes: First of all, it is impossible to test generic
members of a program family are tested with limitedelements in a framework having no concrete imple-
or no reuse of test cases. Considering that all menientation. Secondly developers will introduce new
bers of a program family have the same commorgrrors when they adapt generic elements for their
core, this seems to be unnecessary. Test cases, whigHrposes. Both problems are alleviated, if it is possi-
retest the common functionality of different family ble to make a regression test of any concrete adapta-
members, should be easily reusable form one membé&pn.
to the next.

Program
Variant B

Program
Variant C




3 Test Cases for a Test Bench test of the GUI. This approach is based on so called
A main issue with this approach is the question,atomic system functions (ASF) which can be roughly
what kinds of test cases are best suited for integratiodescribed as the path of method calls, caused by some
in the test bench? In this section we propose somevent at the system border and terminated by some

properties, such test cases should have, and takeoaitput of the system.
respective look at current testing techniques for ob- Starting from the system border, the developed
ject-oriented software. test cases are more abstract and universal than those
at class level. But the implementation of the system is
} - i . . still considered, making those test cases relevant for
We identified the following properties to be im- teging critical functionality. Subsystems do not need
portant for test cases, which can be integrated in ag gy for testing, making this approach quite scal-
appropriate test bench: able. A drawback is the stability of test cases, because
* Abstraction We can not test everything. Test they are tied up between the borders of the system
cases should be focussed on the externally visibland the internal implementation.
behaviour of the framework under test.

. 4 Testing Collaborations
* RelevanceWhile test cases should abstract from i } o ) o
details, they should still be relevant enough to In this section we will first explain our motivation

adequately test the framework's functionality. and basic ideas for developing test cases from object-

Stability: Test hould b bust not b I(oriented collaborations, and subsequently how role
>tabllity- 1€st cases should e Trobust not brea ‘modelling supports this effort. Afterwards we will
ing from small changes in the implementation.

. describe a testing process for our approach and dis-
Otherwise the test bench approach would be ©Quss where tools can help in automation of the in-

costly. volved tasks.
e Scalability: Frameworks can consist of a few ) .
classes solving one problem or hundreds oft-1 Collaborations and Testing
classes addressing various tasks. We need test When proposing their ASF technique [Jorgensen
cases for any granularity and want to combine& Erickson 1994] argue that traditional software
them, if it is necessary. development by functional decomposition stresses
«  Universality: If we want to test some functional- structure over behgviourlwhich is one of the ce_ntral
ity, it must be possible to develop appropriateejleme,ms of the object-oriented paradlgm: They iden-
test cases. It is not tolerable that we can not dellfY this as source for many problems arising, when
rive test cases in some situations. trqdltlonal testing techniques are adapted for object-
oriented systems.
3.2 Brief Look at Current Techniques While we also believe that it makes usually no
Because this approach concentrates on testingense to use traditional testing techniques for object-
object-oriented frameworks, we want to keep thoseoriented systems, we have identified a source of
issues in mind and take a brief look at current techproblems in the object-oriented paradigm itself. As
niques for testing object-oriented software, we foundBooch 1994] illustrates, object-orientation stresses
in literature. Most work about testing object-orienteddecomposition into objects over algorithmic decom-
software concentrates on testing individual classesposition. As a matter of fact, object-oriented design
There have been successful attempts to test individuanethods allow for detailed description of structural
classes using techniques from procedural programeelationships, for example using class diagrams. On
ming [Fiedler 1989], based on state machines [Turnethe other hand the behaviour of a single object is fully
& Robson 1993, Hoffman & Strooper 1995, Binder specified by its class. But the collective behaviour of
1999] or the abstract data type nature of object® group of objects comes in second position, if it is
[Doong & Frankl 1994]. explicitly considered at all. We call such collective
All those techniques have in common that theybehaviour of a group of objects collaborations fol-
view a single class as the central entity for testinglowing the UML terminology, [Booch 1994] calls
Within the scope of classes they produce stable anthem mechanisms.
abstract test cases based on a class interface. But all The statement, that collaborations are often not
techniques do not scale up well for interacting clus-adequately specified, is supported by observations,
ters of classes, because the underlying models get toghich have been made in the maintenance phase of
complex. Another drawback of these techniques is th@bject-oriented systems [Wilde et al. 1993]. They
fact that they are usually restricted to certain types ofdentified distribution of program function across
classes and are therefore not universal. several classes, what is natural for object-oriented
Something we felt to be missing, are techniquessoftware, without proper documentation as a difficult
for object-oriented integration testing. We found only problem that makes programs hard to understand.
one approach [Jorgensen & Erickson 1994] to test 8ecause a behavioural description is the foundation

complete subsystem that is not limited to a black-boxor any test, consequently it also makes programs
hard to test.

3.1 Test Case Properties



Our approach is to base tests on those collabora role defines the position and responsibilities of an
tions that implement the essential functionality of anobject that takes part in such a structure of collabo-
object-oriented system. In the case of a frameworktating objects. Role modelling is actually an abstrac-
this means developing test cases for those collabordion process suppressing irrelevant objects and un-
tions that define the externally visible and usablenecessary details of objects. An object's role in con-
functionality of the framework. In short words, the text of a given collaboration, described by a role
extension points of the framework that can be used omodel, specifies only the necessary capabilities of the
extended by a program implemented on top of thenbject in the given context.
framework, see also [Riehle & Gross 1998].

Behavioural design patterns, like for example-
server or Chain of ResponsibilitfGamma et al. /’L’mmata\ S
1995], describe collaborations which have appeared // S s ~<
valuable in various contexts. Collaborations can be { clcollection: List >
composed like design patterns to achieve even more !
comprehensive collaborations. This is also possible \ / \
for the respective test cases which can be combined \ / \ /
to test the newly composed collaboration. \ \

We believe using collaborations as basis for test N mlelement | s
cases gives us enough flexibility to integrate them N\ || e
into a test bench. They fulfill the following proper- S o

ties: ~__

* Abstraction: They are well suited for abstraction
from details, since they can be based completely
on interfaces without touching implementation Figure 2 Three objects in two collaborations
details.

+ RelevanceBecause we concentrate on externally?-3 ~ Example
visible collaborations, they are by definition Figure 3 shows the UML collaboration view of a
relevant to adequately test the framework’s func-role model describing the observer design pattern, as
tionality. shown in figure 2. The role model abstracts from

- Stability: Depending on the level of abstraction 2dditional functionality of the object playing the
used to describe collaborations, they are moréubPject role and possible other objects collaboratln.g
robust to change than test cases for individuaPS observers for the same data. On the reverse side
classes. the collaboration view of the role model contains the

information, necessary to describe the message se-

guence for updating all observing objects, in case the
observed subject is changed.

e Scalability: As mentioned above, collaborations
and their test cases can be composed.

* Universality: Collaborations are the essence of
object-oriented systems. 1: change()

4.2  Separation of Concerns
As [VanHilst & Notkin 1996] state, appropriately

3: update()

chosen collaborations encapsulate fewer design deci- subject — observer
sions than classes and are therefore more stable with 4: getData()

respect to evolution. But how do we find appropriate
collaborations? Similar to [Riehle & Gross 1998] we
believe that classes are not well suited to describe Figure 3 Collaboration view of role model
collaborations. A class implements the behaviour of a Using the information from this diagram, test
complete object that usually participates in more thanqas can be defined. As shown in figure 3, the trig-

one collaboration. For example in figure 2 object Mger 15 start the update collaboration is the method
gcts as element in a list of data and as subject in &hange() that has to be implemented by the object
|mplement_at|on of the observer p_attern. It follows Weplaying the subject role. The test case is executed
need a higher level of abstraction than offered by qking this method for an object playing the subject
classes to describe the participation of an object ifyje jn 5 concrete instantiation of the role model, as

different collaborations. We found role modelling, asgnown in the UML object collaboration diagram in
described by [Reenskaug et al. 1996], is a good WaYigure 4.

to separate concerns - in this case collaborations — Because an abstract role model is not executable,

which are mangled in one class. we need to create instances of concrete objects for

A role model describes a structure of collaborat-¢|4sses implementing the specified roles. For example
ing objects with their static and dynamic properties.;,, figure 4, the situation of one object of the class

2: notifyObservers()



Data playing the subject role and three prototypical In a second step the extractor tool uses the given
objects of the class View playing the observer role igdescription of a role models static structure to extract
shown. Other test cases may require a different set upnly those methods of a class which are relevant to its
of object instances. respective role. Additionally, it analyses the code of
the implemented methods collecting information

1: change() obsL/obsarver about its dynamic behaviour — its collaborations. Both

2 up dateo/ View types of mformanon are combined into an internal
/ 6: getData() representation that can be used by other tools. For

o 4: update() Cy— exa_lmple in a third step, a visual ed|to_r allows visuali-
misubject. Dala <~ geata) View sation of the extracted role model using for example
UML representing its static structure and its collabo-

) - . 5: update() A . .. ..

2: notifyObservers()  8: get;m\ bs3/obsorver: rations. Further it allows the definition of additional

View constraints for the represented collaborations using

OCL or a similar enhancement to the UML easing the
development of test cases.
To complete the test case, we need to determine

an expected result to compare it with the actual result
achieved by test execution. There are various possi-
bilities to do so, depending on the goal of testing. An  Pevelore

expected result can be defined by means of structural Test Case Test
changes, for example the creation of a new observer Code ooy
object, changes in state of participating objects or Role Model 3
parameter values for involved method calls. For the Eracter T ‘
given example we could check, if all participating
objects represent the same information after an up
date. Because sometimes we need to determine the
state of an object, the code under test has to be ex-
tended by additional inspection methods.

However, as can be seen in figure 3, the collabo- Figure 5 Testing Process
ration view of the role model usually gives not
enough information to specify expected results an
therefore complete test cases. On one hand, we coudEz{

use informal descriptions to substantiate the rOledifferent collaborations of a given role model. For

model, but this would make tool support for test C"’15’(’\fexample, this tool suggests available collaborations,

generation difficult. antracts [Helm etal. .1990] ar€for which the tester can then create test cases by pro-
amore formal_ altgrnanve allowing the det_a|led Spec"viding appropriate preconditions and expected results.
fication of obligations between collaborating objects.

o ; Especially this tool assists in the set up of the neces-
Another possibility is the use of the UML object P y P

. ) sary configuration of object instances for a specific
constr_alnt Iangu_age (O.C.L) [O.MG 199.9] to enrich thetest case. The test case generator is closely related to
role diagrams with additional information.

the test execution framework that finally executes the
4.4  Process and Tools developed test cases. It generates Java code for the

In this section we explain our process to developteSt cases and additional set up code according to the

test cases for collaborations and the possibilities fofXt€nsion points of that framework. ,
tool support of the involved tasks. As shown in figure ~One possibility for a test execution framework is

5, the source code of the program or framework un{h€ JUnit testing framework [Beck & Gamma 1998]

der test is the starting point for developing collaborathat offers a simple, but flexible approach to imple-

tion based test cases. In the first step the develop&fent and execute tests. In fact, in the end this frame-

adds information about the roles a class implementg"ork is the test bench, mentioned above, while the

to the source code. Such a role description must indil€St cases developed according to this process and

cate, what operations of the class belong to the rol¥/hich make finally part of the system under test as
and what are the other roles, it collaborates with. FofXecutable code are the program or framework spe-
example [Riehle 2000] gives some pseudo-Java notdfic part of the test bench.

tion for docum_enting such rol_e models fchat_ca_n bes  Conclusions and Outlook

adapted for this purpose. This information is inte-

grated using structured comments, leaving the Java In the preceding sections, we showed that test

code semantically unchanged. As discussed above, z?tutpmatlon maflkes sense fo; the dg\l/ltsslc;pment and
is also necessary to improve the testability of the cod aintenance of programs, and especially for program

by implementing additional inspection methods to amilies. For this reason, we proposed our model of a
ease the realisation of more comprehensive test cases.

Figure 4 Concrete instantiation of role model

TestCase | |

Visual Editor i
Generator dependent on

Internal
Representation
(Role Model +
ollaborations;

Another tool that uses the internal representation
the role model is the test case generator. In a fourth
ep, it assists in the definition of test cases for the



test bench for object-oriented frameworks, the basi$samma, E., Helm, R., Johnson, R., Vlissides, J.

of program families. (1995): Design Patterns - Elements of Reus-
Following the need to realise test cases for a test able Object-Oriented Software, Addison-
bench, we examined the applicability of current tech- Wesley, 1995.
niques for testing object-oriented software. Wepem, R., Holland, I. M., Gangopadhyay, D. (1990):
showed that most of them depend too much on im- Contracts: Specifying Behavioral Composi-
plementation details and scale up badly for clusters of tions in Object-Oriented Systems, ACM SIG-
collaborating classes. In contrast, we proposed the PLAN Notices, vol. 25, no. 10, pp. 169 - 180,
development of test cases focussing on object- October 1990.

oriented co_IIaboratlons which can be specn‘le_d usmqﬂoffman, D., Strooper, P. (1995): The Testgraph
role modelling. We showed, how role modelling can Methodology: Automated Testing of Collec-

be used to abstract from too many details and to sepa- .

rate concerns between different collaborations. While SgnmtgssDS:csé;t?e?iéggL 8, pp. 35 - 41, No
we showed that it is generally possible to develop test ' o

cases using role models of collaborations, it was alsgohnson, R. E., Foote, B. (1988): Designing Reusable

mentioned that, especially for automation of test case Classes, JOOP, vol. 1, no. 2, pp. 20 - 30; 35,
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model extractor and test case generator tools to gafeenskaug, T., Wold, P., Lehne, O. A. (1996):

arnas, D. L. (1976): On the Design and Develop-
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Abstract

This paper summarizes an approach to
specification-based testing that employs UML
statechart diagrams as the underlying
specification, and automatically generates test
drivers and a test script to execute the component
under test. The test drivers cover the specification
according to a selected test criterion and verify
the behavior of the component under test. This
approach has been implemented in a prototype
called Das-Boot (Design And Specification-
Based Object-Oriented Testing). The project has
two short-term goals: 1) to define improved
specification-based coverage criteria suitable for
testing object-oriented software systems whose
behavioral specification is modeled as a
statechart; and 2) to develop techniques for
generating test drivers, incorporating test cases
and test oracles, with little interaction required by
the human tester.
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Specification-based testing, Test automation, Test
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1. Introduction

An increasing number of software systems have
been developed using object-oriented technology.
Object-oriented development emphasizes the
creation of detailed models, which improve
understanding of the software before it is actually
built. These models also provide valuable
information for the testing process by way of
specification-based testing. Yet in spite of the
high frequency of defects in both specifications
and code and the costly consequences of these
defects, there are few techniques for
specification-based testing [1], especially ones
that are applicable to commonly used means of
specification.

The approach presented in this paper automates
testing of Java classes based on their
specifications represented as UML statechart
diagrams. The Unified Modeling Language

(UML) [2] is an evolution of previous object-
oriented modeling languages and techniques and
has been officially adopted as the OMG standard
[3]. UML is a highly visual modeling language;
in addition to words and text, it also consists (and
in fact primarily consists) of graphs and
diagrams. Additionally, UML is an inherently
discrete language, meaning that it emphasizes
discrete representations of dynamic behavior over
continuous representations. The UML statechart
diagram shows sequences of states that an object
or an interaction may go through during its
lifetime in response to received stimuli, together
with responses and actions; therefore, it discretely
represents potential dynamic behavior. The
semantics and notation used in the UML's
statechart diagrams are substantially those of
David Harel's Statecharts [4] with modifications
to make them object-oriented.

2. Background

Das-Boot employs the tenets of both
specification-based testing, whereby information
from the specification is used to guide the testing
process, and state-based testing, which has
traditionally focused on testing implementations
whose structure reflects a finite state machine.

2.1. State-Based Testing

State-based testing has been considered by

several researchers [5,6,7,8,9,10,11,12,13, 14,15].

The main purpose of these works has been to

develop methods for generating a set of test

cases, sometimes called a “test suite”, based upon

a finite state machine (FSM) representation of the

code, with the following objectives:

= Test suites should be relatively small — that is,

there should be relatively few test cases;

= Fach test case should be fast and easily
executable in relation to the component under
test;

= As many defects as possible in the [specification
and/or] implementation are detected.



The FSM-based test generation methods differ in
the compromises made between these conflicting
objectives and the level of formalism upon which
the method is based. Sidhu divides the methods
for test generation based on FSMs broadly into
two categories [16]: (1) those that rely on the use
of characteristic sequences of the states in the
FSM - examples in this category are the U-
method, D-method, W-method and their variants
— and (2) those that seek to construct test
sequences for the actual behavior of an entity
when it interacts with peer entities — these
methods are based on state space exploration.

Object-oriented systems are well suited to use
finite state machines to model their behavior [17]
and consequently also befitting state-based
testing. An object’s state is defined as the
combination of its attribute values. O-O state-
based testing must, therefore, focus on an object’s
state-dependent behavior rather than the control
and/or data structure.

Das-Boot generates a test suite for the
implementation that traverses various sequences
of states based upon the specification. Thus, Das-
Boot’s method falls into Sidhu’s first category,
because the test suite is generated based upon
sequences of states for the objects. In addition,
Das-Boot verifies whether the implementation’s
behavior is consistent with the statechart
specification, detecting failures of the
implementation. It does so by producing a test
driver for each test case that executes the test and
checks the object’s attribute values as it
transitions between states to determine that the
correct transitions are taken and the correct state
is reached, where correctness is determined by
the statechart specification.

2.2. Specification-based Testing

Specification-based testing uses information
derived from a specification to assist testing.
When formal specification is used, it is possible
to automate specification-based testing through
the semantics of the specification formalism.
Specification-based testing includes test case
generation from specifications and/or test oracles
derived from specifications whereby test results
are compared with those specified. There are
other uses of specifications in testing, including
for instance evaluating testability based upon the
specification. Das-Boot automates both aspects
of specification-based testing by employing
statechart specifications.

At least two artifacts are used for specification-
based testing: (a) the specification model, which
embodies the knowledge about the software
requirements, and (b) the method used for test
suite generation, including a coverage criterion

describing how the specification will be covered,
thereby guiding test execution.

Using specification-based testing to test the
specification itself, is straight-forward, because
the artifact upon which test cases are derived
and/or coverage is measured is the same as the
artifact being tested. Specification-based testing
could be used, for instance, in driving simulations
of a statechart specification, as is done in Argus-I
[18].

On the other hand, using specification-based
testing to test the implementation requires two
further artifacts: (c¢) the implementation
(component code) to be tested, and (d) a
representation mapping between the specification
and the implementation, which associates or
maps the test requirements to the implemented
component under test.

Object-oriented systems are well-suited to exploit
specification-based testing because object-
oriented development emphasizes the creation of
detailed models prior to implementation, and
some of these models have formal semantics that
can be utilized to drive test generation.

3. DAs-BooT’s Approach

The testing process under Das-Boot’s direction
begins with the tester indicating the Java class to
be tested and the statechart specification
describing the desired class behavior. Based upon
this information, the tester defines the
representation mapping by associating the code to
the specification. The tester then chooses a test
coverage criterion. Based upon these selections,
Das-Boot automatically produces test drivers
(with embedded test oracles) to satisfy the
criterion and compiles/executes the test drivers
under a test script. At the end of this process,
failures detected by the test oracles as
discrepancies between behavior and the statechart
specification are presented to the user. Figure 1
illustrates this process. In the following
paragraphs, we further explain each step in this
process, highlighting our research efforts.

Statechart Specifications

Das-Boot loads XMI files for the statechart
specifications. XMI (XML Metadata Interchange)
is an OMG standard for the interchange of UML
information between tools. XMI support gives
Das-Boot the capability to read statechart
diagrams from other UML modeling toolkits like
Rational Rose [19] and Argo/UML [20]. We do
not go into the detail of statecharts in this paper,
but rather encourage the reader to look elsewhere.
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Representation Mapping

Das-Boot assists the tester in defining the
representation mapping. The mapping is done by
associating the following:

= statechart transitions —> Java class operation(s);
= statechart states —>Java class attributes(s);

= limits of a specific object state —>range of
attribute values.

Adding this test information, which is sometimes
called “making test-ready”, requires additional
work, but is by far easier than creating new
specifications or models just for the purpose of
testing. Although some might view this as a
drawback of Das-Boot’s approach, we view it as
a major advantage, because augmenting with
testing information enables specification-based
testing to use existing models, potentially
imported from another tool. This significantly
reduces the overhead involved in using
specification-based testing.

Test Drivers

Das-Boot automates the actual testing process as
much as possible by generating automated test
drivers for each test case that not only force
required coverage but also check to ensure that
the implementation behaves according to the
specification or model. Thus, for each transition
(consisting of a source state, triggering event,
action to be taken, and destination state) to be
covered, the test driver developed puts the object
into the source state, creates the circumstances
leading to the triggering event, observes any
actions taken and the destination state, and
compares those actions and destination to those
specified in the model. A point of our research is
to make this generation more efficient, with little
interaction required by the human tester.
Currently, we are using templates to generate the
test drivers and are evaluating this approach so as
to improve them.

Test Coverage Criterion

A test coverage criterion typically defines
structures of the component under test that must
be covered to satisfy the criterion; they are
traditionally implementation-based and
sometimes called structural criteria. For instance,
branch coverage requires that every branch in the
component under test be executed by at least one
test case. The FSM-based criteria discussed
above require that every state, transition, or
traversal through the FSM model of the
implementation is covered by execution of the
test suite; as such they are implementation-based.
Specification-based test coverage criteria define
what to test based upon covering a behavioral
specification of the component under test. Many
specification-based criteria are analogous to
implementation-based criteria extended by
applying the core ideas to a specification rather
than code. Das-Boot supports specification-based
test coverage criteria that extend FSM-based test
coverage criteria.

Das-Boot implements what we call the
StateVisited criterion, which permits the tester to
determine how many times a state is visited and
when and how often a particular state is revisited;
the tester typically makes this selection based on
the granularity (range of values) associated with
the state. The StateVisited criterion extends the
W-method [21], which requires covering the tree
of possible sequences of transitions from the
initial state without revisiting states, the W-
method is somewhat analogous to the
implementation-based “basis path coverage”
criterion. The StateVisited criterion allows
revisiting a state after a transition sequence is
exercised. We developed the StateVisited
criterion because we believe that some failures
could be revealed only when states are multiply
visited. This criterion is useful first as a power-
assist that enables the tester to increase the
coverage performed by state-based testing. When



the tester decides to use the StateVisited criterion,
however, the computational complexity is higher
than the W-method. In spite of this, some points
should be observed:

= Normally, the number of states modeled for a
class is not too large, so that visiting states more
than once imposes little increased complexity;

= The automation of the test tree construction and
related test case generation and execution do not
diminish the complexity problem, and may
actually minimize it;

= Some classes in object-oriented software are
more critical than others, thus requiring more
extensive testing and greater coverage; this
should be taken into account in applying the
StateVisited criterion to each class.

4. Related Works

Recently, a number of techniques have been
proposed for applying FSMs to object-oriented
class testing. These state-based approaches to
class testing concentrate on the interaction
between the attributes and the member functions
of classes. This work has shown that FSMs can
be effectively used to test this interaction by
representing the values of attributes as the states
of FSMs and the member functions as the
transitions of FSMs. Our work is related to
approaches that apply UML statechart diagrams
to class testing. Here we overview three
approaches. Kim et al. [22] apply state diagrams
to UML class testing: their approach flattens the
hierarchical and concurrent structure of states and
eliminates broadcast communications to obtain an
extended finite state machine (EFSM); they also
transform the resulting EFSM into a flowgraph
from which control flow paths are generated and
conventional data flow testing is applied. Kung et
al.[23] describe a class testing technique using a
variation of Statecharts, called object state
diagram (OSD): their approach extracts and OSD
directly from source code and generates test cases
by constructing a spanning tree for the OSD. In
contrast, we regard UML state diagrams as class
specifications and propose a hierarchy of
coverage criteria for UML state diagrams based
on control and data flow information. Liuying
and ZhiChang [24] present a method based on the
Wp-method that automatically generates and
selects test cases from UML: the Wp-method is
an extension of the W-method, which uses partial
characterization set instead of the entire
characterization set, but guarantees complete fault
coverage.

5. Conclusions and on-going work

We are developing an approach for testing the
behavior of Java classes based on and against
UML statechart diagrams; Das-Boot is a
prototype tool that supports this approach. In
conjunction with this, we are working on a
comprehensive specification-based testing
approach for object-oriented software systems
that provides support from unit testing through
integration and system testing by exploiting a
variety of UML diagrams. Das-Boot serves as a
testbed for experimenting with approaches to
specification-based object-oriented testing.

A significant point in our research is to define
better specification-based coverage criteria
suitable for components whose behavioral
specification is modeled as a statechart, and more
broadly for systems whose requirements and
design are specified using object-oriented
notations. A widely used test coverage criterion
for FSM-based testing is Chow’s W method [21].
This method is not ideal to work with statecharts,
however, due to the fact that statecharts extend
traditional finite state machines with hierarchy
and concurrence. The W-method is unable to
cover the possibilities for parallel states. We are
attempting to attack this problem in two
directions. The first is by redefining our
extension of the W-method to work on
statecharts. Our starting point is to test every
statechart transition through the combination of
concurrent states — that is, to design test cases to
set each possible current state, creating the
circumstances which lead to an event, to observe
the action taken, the transition made, and the new
state(s). As there is a defined set of transitions in
the state model, a coverage measure can be
associated with the proportion of transitions
exercised by a set of test cases. The second
direction is to translate from statecharts to basic
finite state machines, and then apply our
extension of the W-Method. This direction is in
line with our interest in applying model checkers,
such as SPIN and SMV over statecharts, since
existing model checkers work on traditional FSM
representations.

It is important to point out the following efforts
are yet to be considered, which may also be
considered as future work: an empirical study to
verify the effectiveness of the StateVisited test
coverage criteria; and determination of the
computational complexity related to the
StateVisited criteria.
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ABSTRACT

This paper briefly sketches a general strategy for automated
black-box testing of software components that includes:
automatic generation of component test drivers, automatic
generation of black-box test data, and automatic or semi-
automatic generation of component wrappers that serve as
test oracles. This research in progress unifies several
threads of testing research, and preliminary work indicates
that practical levels of testing automation are possible.
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1 INTRODUCTION

Modular software construction through the assembly of
independently developed components is a popular approach
in software engineering. At the same time, component-
based approaches to software construction highlight the
need for detecting failures that arise as a result of
miscommunication among components. In component-
based software, a component's interface (or specification) is
separated from its implementation and is used as a contract
between the clients and the implementer(s) of the
component [9]. In practice, failures in component-based
systems often arise because of semantic interface violations
among components—where one party breaks the contract.
These errors may not show up until system integration,
when they are more expensive to identify and fix. Even
worse, internal violations may not be discovered until after
deployment. As a result, component-based development
increases the need for more thorough testing and for
automated techniques that support testing activities.

This paper outlines a general strategy for automated black-
box testing of software components. The strategy is a
three-pronged attack, covering automatic generation of
component test drivers, automatic generation of test data,
and automatic or semi-automatic generation of wrappers

serving the role of test oracles. This work unifies several
threads of testing research into a coherent whole. While
many interesting and tough research questions remain open,
preliminary results suggest practical levels of automation
are achievable for components that include formal
behavioral descriptions.

Section 2 describes the assumptions about components that
are necessary for the approach to work, and presents an
example component specification satisfying these
assumptions. Section 3 discusses a critical piece of the
strategy presented here: the use of pre- and postcondition
checking wrappers around the component under test.
Building on this foundation, Section 4 lays out the vision
for an automated testing framework. Section 5 briefly
discusses related work, followed by open research issues
and future directions in Section 6.

2 AN EXAMPLE COMPONENT: ONE-WAY LIST
For the proposed strategy to work, what assumptions are
made about components? First, a component must have a
well-defined interface that is clearly distinguishable from
its implementation. Second, in order to automate the
process of generating test data or checking test results, one
must have some description of the intended behavior of the
component under test. The initial requirement for the
research described here is that a component must have a
formally specified interface described in a model-based
specification language. RESOLVE [16] has been selected
as the specification language for this research, although
other model-based specification languages [17] are also
applicable. The choice of specification language was made
for two pragmatic reasons: the researchers involved were
familiar with the language, and using it provides a natural
collaboration path for fielding tools. Researchers at The
Ohio State University and at West Virginia University are
collaborating on a Software Composition Workbench based
on RESOLVE technology that is an ideal environment in
which to evaluate and apply the testing tools described in
this paper.
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pecification for One-Way List

Although the initial research requirement is that all
components have formally specified interfaces, the tools
making up the approach do provide graceful fallback
positions if only semi-formal or informal component
behavioral descriptions are available. Informal descriptions
require more human intervention in the process, however,
since there is no easy way to automatically extract
behavioral requirements. The end result is a strategy that
can still be applied, even without any formal behavioral
descriptions, but at the cost of reduced automation and
greater programmer intervention.

To ground the discussion of formally specified components
in this paper, Figure 1 presents the RESOLVE specification
of a one-way list component that was originally described
by Sitaraman et al. [15]. This generic component is
parameterized by the type of item it will contain. A one-
way list is an ordered sequence of items, all of the same
type. One may move forward in the sequence, accessing
individual elements in turn, or jump to either end of the
sequence. A similar component that supports bi-directional
movement is presented by Zweben [19]. A one-way list
may be implemented as a singly-linked chain of



dynamically allocated nodes, as a dynamically allocated
array, or by building on other components like a stack, a
queue, or a vector.

The mathematical model of the one-way list shown in
Figure 1 is a pair of mathematical strings (finite sequences).
There is no explicit notion of a “current position” or
“cursor.” Instead, the current location is implicit in the fact
that the string is partitioned into left and right segments.
Intuitively, items to the “left” are those that are “behind”
the current location (closer to the front of the sequence),
while those to the “right” are in front (toward the rear).
The preconditions (requires clauses) and postconditions
(ensures clauses) of each operation supported by the
component are described in terms of this mathematical
model. In postconditions, the pound sign (#) is used to
refer to the incoming value of a parameter, rather than its
outgoing value.

3 THE CENTRAL FOCUS:
CAPABILITIES

The cornerstone of the automated testing framework is a
micro-architecture for providing built-in test (BIT) support
in software components. This architecture builds on
current research in systematically detecting interface
violations in component-based software [4]. In essence,
each software component provides a simple ‘“hook”
interface (with no run-time overhead) that can be used in
adorning the component with sophisticated BIT
capabilities. Figure 2 illustrates this idea. Sophisticated
“decorator” components (wrappers) that provide a number
of self-checking and self-testing features can then be used
to encase the underlying component.

BUILT-IN TEST

The innovative properties of this strategy are:

e BIT wrappers are completely transparent to client and
component code.

e BIT wrappers can be inserted or removed without
changing client code (only a declaration need be
modified). This capability does not require a
preprocessor, and can be wused in most current
languages.

e When BIT support is removed, there is no run-time cost
to the underlying component.

e Both internal and external assertions about a
component's behavior can be checked.

e Precondition, postcondition, and abstract invariant
checks can be written in terms of the component’s
abstract mathematical model [4], rather than directly in
terms of the component's internal representation
structure.

e Checking code is completely separated from the
underlying component.

Client Interface

Component
BIT Access e &8 JomP
— =

Figure 2-Component Provide s “Hooks”
for BIT Infrastructure

e Violations are detected when they occur and before they
can propagate to other components; the source of the
violation can be reported down to the specific
method/operation responsible.

e Routine aspects of the BIT wrappers can be
automatically generated.

e The approach works well with formally specified
components, but does not require formal specification.

e The approach provides full observability of a
component's internal  state  without  breaking
encapsulation for clients.

e Actions taken in response to detected violations are
separated from the BIT wrapper code.

Figure 3 illustrates a component encased in a two-ply BIT
wrapper. The inner layer of the wrapper is responsible for
directly and safely accessing the component's internals,
performing internal consistency checks, and then
converting the internal state information into a program-
manipulable model of the component's abstract state [4].
The outer layer is responsible for using this model to check
that clients uphold their obligations in using the underlying
component, to check that the component maintains any
invariant properties it advertises, and to double-check the
results of each operation to the extent desired for self-
testing purposes. Client code accesses the component just
as if it were unadorned.

The BIT strategy is designed to provide maximal support
during unit testing, debugging, and integration testing. By
outfitting a component with a BIT wrapper during unit
testing, much more thorough testing can be achieved with
the ad hoc strategies most developers employ. For every
test case executed, a large number of internal consistency
checks are performed, any one of which has the potential of
revealing errors. Since these checks are automatically
performed for any and all operations executed by the
component in each test case, they have the effect of
multiplying the tester's ability to detect errors. When errors
are found, the full visibility of internal state provided by the
BIT strategy is helpful during debugging. In particular, the
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strategy provides the programmer with additional
capabilities for both input and output of internal state
information, as well as the ability to modify internal state
information for debugging purposes. None of these
capabilities require any additional design or coding time
from the developer, beyond the inclusion of the original
BIT hooks in the underlying component. Finally, during
integration testing, BIT wrappers can provide firewalls
between components for incremental integration. As new
units are added to the system, the wrappers will detect any
unforeseen interactions. This strategy supports bottom-up,
top-down, and hybrid incremental integration strategies.

4 THE VISION: AN AUTOMATED TESTING
FRAMEWORK

The BIT infrastructure provides a natural mechanism for

supporting semi- or fully automatic testing. Simply put, the

framework for automated testing described here rests on

three legs:

e Automatic (or semi-automatic) generation of a
component's BIT wrapper.

e Automatic generation of a component's test driver.

e Automatic (or semi-automatic) generation of test cases
for the component.

All three generation strategies rely on the same
information: a complete behavioral description of the

component's interface contract. By combining these
generation strategies, it is possible to create a test driver, a
test suite, and a BIT wrapper directly from a component's
specification. If the BIT wrapper also provides
comprehensive checks on the postconditions of all exported
operations—in effect, acting as a test oracle—then the
combination will produce a highly automated testing and
debugging capability, as outlined in Figure 4.

Generating BIT Wrappers

We have designed and implemented a generator that uses
RESOLVE-style component specifications and C++
template interfaces to generate BIT wrappers [14]. The
underlying principles for creating such wrappers are
independent of any particular specification technique or
implementation language, and they can be readily extended
to other languages [4].

The external interface of a BIT wrapper is identical to that
of the corresponding base component. Semantically, they
differ in how they behave when either the pre- or
postcondition of some operation is violated. In particular,
where a regular component guarantees nothing if an
operation is invoked under conditions violating its
precondition, a BIT wrapper instead guarantees it will
perform a specific notification action. We call a BIT
wrapper that only checks for precondition violations a one-
way checking wrapper.
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be generated mechanically [2]. As a result, we
are exploring the following possibilities for
providing greater support for automated BIT
wrapper construction:

¢ Semi-Automatic Generation: It is possible
to automatically generate checking code for
many preconditions as well as for many
clauses in postconditions. One possible
approach to solving this problem is to
automatically generate everything that is
appropriate, and allow a human to provide
the code for those checks that cannot be
automated.  Our experience with the
prototype wrapper generator indicates it is a
simple process to separate the human-
contributed checks from all of the other
infrastructural code necessary to support a
BIT wrapper. Further, the person creating
the checks will write them in abstract
client-level terms—i.e., the mathematical
model of the component’s state—instead of
in terms of the implementation of the
component under test [4].

e Dynamic Assertion Verification: An

Similarly, a two-way checking wrapper guarantees to:

1. Carry out its precondition notification action if the
precondition does not hold, or

2. Establish that the postcondition is true upon operation
completion, or

3. Carry out its postcondition notification action if the
postcondition does not hold.

Both one-way and two-way checking wrappers are
extremely useful. One-way wrappers correspond with the
traditional notion of a “defensive shell” that protects a
component from errant clients. Two-way wrappers, on the
other hand, are more akin to “self-checking” or “self-
verifying” components that confirm their own work as well
as spotting erroneous client behavior.

While constructing BIT wrappers is a straightforward
process, it raises the question of how one can automatically
generate pre- and postcondition checks.  For most
components, checking each precondition is straightforward
and can thus be automated. By using the model conversion
approach described in [4], many precondition and
postcondition assertions can be converted to code by a
simple transliteration process. For example, complete pre-
and postcondition checks can be automatically generated
for the one-way list specification in Figure 1.

However, some assertions are non-trivial. For example,
code for checking assertions containing quantifiers cannot

alternative that we are actively exploring
uses current generation verification tools.
While current verification tools often have trouble with
complex quantified assertions that arise during static
formal verification, the simpler assertions that arise at
run-time in a BIT wrapper, where all variables have
specific values, are more amenable to existing proof
tools. It is possible to automatically generate a
complete BIT wrapper that relies on a verification/proof
engine for assertion checking with specific parameter
values at run-time.

e “Armored” Components Using Reference
Implementations: If a reference implementation for a
component (even an inefficient one) exists, it is possible
to automatically generate a BIT wrapper that performs
back-to-back testing against the component under test.
This opens up intriguing possibilities, since it is possible
to recover from internal errors; the wrapper, which
stands between the client and the two implementations,
can selectively pass on the reference implementation
results when the unit under test fails. Further, the BIT
infrastructure even allows the “good” data produced by
the reference implementation to be used to force
recovery on the unit under test [4]. This leads to a
defensive wrapper that is close to bulletproof.

Generating Test Drivers

Compared to the difficulties involved in generating BIT
wrappers, generating test drivers is a simpler problem. The
research described here is based on an interpreter model for
test drivers: a test driver can be viewed as a command



interpreter that reads in test cases and translates them into
actions on the component under test. From this point of
view, it is straightforward to parse a component's interface
definition, identify its operations, and construct an
interpreter. All filtering of invalid operation requests is
handled by the BIT wrapper encasing the component under
test, as is run-time checking of produced output. The major
weaknesses of this approach are in effectively handling of
components that rely on inversion of control or that have a
substantial human interaction component.

We have designed and are currently implementing a test
driver generator based on this strategy. We are currently
using RESOLVE/C++ as the underlying implementation
language for our components [16], and so have adopted a
subset of C++ as a test case definition language. Figure 5
shows a sample test case one might use for the one-way list
component.

The architecture for the interpreter/test driver uses the
envelope and letter paradigm for handling internal values,
and uses an exemplar-based dispatching strategy for
handling operations on user-defined objects [3]. As a
result, the core interpreter engine does not directly refer to
the component under test or any of its methods. This
means that support for any unit under test can be added
without requiring any changes to or recompilation of the
interpreter engine itself. Instead, our driver generator
creates a “glue” source file that, when compiled and then
linked with the existing interpreter object files, produces a
custom driver for the component under test. Our
experience has been that an interpreter provides a
significant time savings over direct compilation of test
cases when large test sets are used.

Generating Test Data

There are a number of strategies for generating black-box
test data from a component’s behavioral description [1].
The generation approach we have taken is adapted from
black-box test adequacy criteria described by Zweben et al.
[19]. This black box test adequacy work describes how one
can construct a flow graph from a behavioral specification.
This directed graph has a single entry, representing object
creation, and a single exit, representing object destruction.
Every “object lifetime”—composed of some legal sequence
of operations applied to a given object—is represented as
some (possibly cyclic) path through the graph.

Given such a flow graph, possible testing strategies become
evident [1]. Zweben et al. describe natural analogues of
white-box control- and data-flow testing strategies adapted
to black-box flow graphs, including node coverage, branch
coverage, all definition coverage, all use coverage, all DU-
path coverage, and all k-length path coverage. Further,
because branches in the graph represent different choices
for method calls in a sequence, instead of logical control-
flow decisions, it is easier to generate test cases that
exercise all branches.

{
List 1;
Integer x;
x = 43751;
T.Add_Right (x);
1.Remove_Right (x);
cout << "output => " << 1
<< ' ' << x << endl;
}
Figure 5—A One-Way List Test Case

As with other black-box test generation strategies, this
approach faces two open issues: how to correctly and
efficiently decide which edges should be included in a
graph, and how to address the problem of satisfiability in
choosing test data values to be used in individual test cases.
While perfect solutions to these problems are not
computable, practical heuristics that provide approximate
solutions are available. When combined with a BIT
wrapper surrounding the component under test, invalid test
cases can be automatically screened and removed, allowing
overly optimistic heuristics to be used in practice. Further,
the internal checks performed by BIT wrappers have the
possibility of revealing defects that are not directly
observable from the output produced by operations. This
property can lead to an automated testing approach that has
a greater defect revealing capability than traditional black-
box strategies.

We have experimented with automatically generating test
data by constructing flow graphs directly from RESOLVE
specifications. We have implemented a prototype tool for
this purpose, and are currently in the process of evaluating
the effectiveness of the corresponding test data using fault
injection techniques [18]. Specifically, we have taken four
RESOLVE-specified components (a stack, queue, one-way
list, and partial map), and applied an expression-selective
mutation testing strategy [10] to seed known defects in
them. Test sets for each component were then generated
using the approach outlined here for three coverage criteria:
all nodes, all definitions, and all uses. Each mutant was run
on the corresponding test sets, and data were collected both
with and without BIT wrappers.

The preliminary results of this experiment are summarized
in Table 1. “# Test Cases” indicates the number of distinct
test cases (such as the example in Figure 5) in each test set.
“Output Failures” indicates the number of mutants killed by
the corresponding test set based solely on observable output
(without considering violation detection wrapper checks).
“BIT Failures” indicates the number of mutants killed
solely by using the invariant and postcondition checking
provided by the subject’s BIT wrapper. Figure 6 provides a
graphical summary of the percentage of mutants killed



Adequac . # Test | Output BIT
Crit(irior? Subject Cases Faillfres o Failures %
Stack 6 6 21.4% 16 57.1%
Queue 6 5 18.5% 15  55.6%
All Definitions | One-Way List 11 47 39.2% 83  69.2%
Partial Map 6 92 37.6% 132 53.9%
Total 29 150 35.7% 246  58.6%
Stack 5 16 57.1% 22 78.6%
Queue 5 15 55.6% 21 77.8%
All Nodes | One-Way List 10 37 30.8% 89 742%
Partial Map 7 118 48.2% 153 62.4%
Total 27 186 44.3% 285  67.9%
Stack 32 26 92.9% 28 100.0%
Queue 32 25 92.6% 27 100.0%
All Uses One-Way List | 126 106 88.3% 120 100.0%
Partial Map 61 185 75.5% 214 87.3%
Total 251 342 | 81.4% 389 | 92.6%

Table 1—Expression-Selective Mutation Scores of Test Sets

under each condition, together with the increased detection
rate provided by BIT wrappers.

As expected, all uses coverage provided a higher defect-
revealing capability than the other criteria. The use of two-
way checking BIT wrappers provided an improvement in
defect revealing capability in every case where they were
used, ranging from 8% 200% more mutants killed. The
greatest improvement was seen in the weakest test sets; for
example, the all definitions test set for the queue
component only revealed 18.5% of defects by examining
test output alone, but this rate increased to 55.6% with a
BIT wrapper.

Most surprising of all, for three of the four components,
100% of seeded defects were revealed by using BIT
wrappers together with all uses coverage criteria. The
fourth and most sophisticated component, the partial map,
showed an 87.3% defect detection rate under the same
circumstances. This result appears to be caused by two
separate factors. First, the heavy degree of automated
checking provided by the BIT wrappers significantly
boosted the defect detect rate of the test sets. Second, the
components that saw 100% defect detection rates had
significantly fewer complex logic conditions and nested
control constructs in their methods, and code
instrumentation analysis revealed that full white-box
statement-level coverage was being achieved by the test
sets. This may be atypical of most components, so the
100% fault detection results for “all uses” should not be
unduly generalized. On the other hand, design guidelines
for object-oriented software argue for small, simple
methods, even in complicated objects, so it is conceivable
that the components used in this study are more
representative of current coding practices than the deeply
nested logic of procedural-style programming.

The preliminary results provided by this experiment,
together with our experiences with the generator, indicate
that there is the potential for practical automation of this
testing strategy.

5 RELATED WORK

The BIT wrappers here are built on a philosophy perhaps
best phrased by Bertrand Meyer as design-by-contract [9]:
preconditions of operations are the responsibility of callers
while postconditions are the obligations of implementers,
and implementers may thus assume that the preconditions
hold at the time of invocation. Others have proposed
different allocations of responsibilities [8, 12]. One key
difference in the approach advocated here is that
responsibility for checking whether or not obligations are
met should be separated from both client and implementer.

100.0%
90.0% -
80.0% -
70.0%
60.0%
50.0% -
40.0%
30.0% -

OBIT Wrapper
@ Output Only

One-Way List
Partial Map
One-Way List
Partial Map
One-Way List
Partial Map

all nodes all uses

all defs

Figure 6—Defect Detection Rates



In addition to decoupling checking code from both the
client and the component, this also opens up the
opportunity of performing checks in client-level, abstract
terms instead of in component-level implementation
details. This results in highly reusable wrappers that easily
can be added to or removed from a system.

Many others have also discussed the idea of run-time
assertion checking. The Annotation Pre-Processor
described by Rosenblum [13] is a good example. However,
such approaches typically do not distinguish between the
abstract view of component state perceived by clients and
the concrete, implementation details seen by implementers.
In addition, such approaches are rarely integrated into an
overall strategy for automated testing. Eiffel provides
another well-known approach for pre- and postcondition
checking at runtime [9]. A more complete discussion of
differences between BIT wrappers and Eiffel assertion
checking is provided in [4], but the Eiffel approach is not
combined with a systematic approach to producing test
drivers or test data.

Other published approaches to specification-based testing
of object-based and procedural software components [2, 5,
6, 7, 11] have influenced this work. The research described
here differs, however, in the way it incorporates run-time
interface violation checking, a strategy for generating test
data, a design for unit and integration test drivers, and the
way it separates testing infrastructure code completely from
all units under test in a system.

6 CONCLUSIONS AND FUTURE WORK

This paper briefly sketches a general strategy for automated
black-box testing of software components. The strategy is
based on combining three techniques: automatic generation
of component test drivers, automatic generation of test data,
and automatic or semi-automatic generation of wrappers
serving the role of test oracles. This research in progress
unifies several threads of testing research into a coherent
whole. Several difficult research questions remain open,
but work to date indicates that practical levels of testing
automation are possible.

The primary open research issues for future work include:

o Evaluating the effectiveness of test data produced using
our current prototype tool.

e Exploring the limits of semi-automatic generation of
postcondition checking code in BIT wrappers.

e Assessing the feasibility of dynamic verification of
postconditions as an alternative implementation strategy
for BIT wrappers.

e Exploring alternative heuristics for generating flow
graphs from specifications.

e Exploring alternative heuristics for selecting specific
data values to be used in generated test cases.

e Completing and evaluating the test driver generator.
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ABSTRACT constructing additional test cases needed to satisfy the
selected criteria.
Mutation Testing — one of the fault-based criteria — has  Considering the diversity of testing criteria as well
been found to be effective on revealing faults. their complementary aspects, some theoretical and
However, its high cost of application, due to the high empirical studies have been conducted, aiming at
number of mutants created, has motivated the establishing an effectiveJow-cost testing strategy
proposition of alternative approaches for its [5][14][12][20][21][15][22][3][17]. Effectiveness, cost,
application. One of them, named Selective Mutation, and strength are the three most meaningful bases
aims to reduce the number of generated mutantsagainst which test adequacy criteria can be compared.
through a reduction on the number of mutant operators. Effectiveness is related to the fault detection capability
A previous relevant study resulted on the proposition of of a criterion; cost indicates the effort to satisfy a
a sufficient mutant operators set for FORTRAN, criterion; and strength refers to the difficulty of
indicating that it is possible to have a large cost satisfying a given criteriorC, for a test setT that
reduction of Mutation Testing, preserving a high already satisfies another criteri@h.
Mutation Testing score. In the same research line, this  Mutation Testing, originally proposed by DeMillo
work investigates procedures for the determination of aet al [9], although powerful, is computationally
sufficient mutant operators set for C programs in the expensive [20][21][15]. Its high cost of application,
perspective of contributing to the establishment of low- mainly due to the high number of mutants created, has

cost, effective mutation based testing strategies. motivated the proposition of alternative criteria for its
application [1][11][14][15]. One of these alternatives
Keywords tries to reduce the cost of Mutation Testing application

Software Testing, Mutation Testing, Sufficient Mutant by _cli_(re]'irmw(l)r;g a isnlc‘ggizrgtgwsutaanl:)g:ooe;;zoerss S?(t)r[ﬁ{'he
Operators determination of a sufficient mutant operators set for C,
aiming at contributing to the establishment of low-cost,
1 INTRODUCTION effective mutation based testing strategies. We
) _ o designed a procedure for the determination of a
Software ~testing, which has as objective the gyfficient mutant operators set for C language, named
identification of not-yet-discovered errors, is one of the Susficient Procedure [3][4], based on guidelines we
most important activities to guarantee the quality and have established inspired in, revious work
the reliability of the software under development. The We carried out two ex;?erimentS' Ex.periment |

success of the testing and validation activities dependsusing a set of 27 programs, part of a text editor; and

on the quality of a test set. . . . S
. . . . Experiment I, using 5-Unix utility programs. These
Since the exhaustive test is, in general, .
. ) T . experiments have been conducted ushHrgteum [6],
impracticable, criteria that allow selecting a subset of an acronvm forPROaram TEsting Usina Mutants:
the input domain preserving the probability - of tool that gu orts thgl testing of Cg ro rgms at rt]he unit
revealing the existent errors in the program are level PP 9 prog

necessary. These criterig systematize the testing The remainder of this paper is organized as follows.
activity and may also constitute a coverage measure[9]. In Section 2, an overview of mutation testing is

There are a large number of criteria available to rovided as well as the related work is described. In
evaluate a test set for a given program against a glVengection 3 we discuss the guidelines we thought about to

specification. A tester may use one or more of these . ) .
criteria to assess the adequacy of a test set for aestabllsh theSusticient Procedure. Sections 4 and 5

program and, if it is the case, enhance the test set by:ontain_the description_and analysis of the experiments
we carried out. In Section 6 we compare the results of



Experiment | and Experiment Il. In Section 7, our
conclusions and further work are presented.

Randomly Selected Mutation, proposed by
Acreeet al [1], considers a percentage of the mutants
generated by each operatox%). Empirical studies
conducted for FORTRAN and C programs [5][21]
indicated that it is possible to obtain high mutation
Mutation Testing is a fault-based testing criterion [9]. scores even with a reduced number of mutants.
This criterion is based on the assumption that a However, the randomly selection of mutants ignores
program will be well tested if all so-called “simple the fault detection capability of individual mutant types
faults” are detected and removed. [22]. Budd’s fault detection experiments [5] found that

Simple faults are introduced into the program by mutants generated with respect to one mutant operator
creating different versions of the program, known as may be more effective in detecting certain types of
mutants, each of which containing a simple syntactic faults than mutants generated with respect to another
change. The simple faults are modeled by a set ofoperator. This suggests that while mutants are selected

2 MUTATION TESTING: AN OVERVIEW

mutant operators applied to a progr&ninder testing.
The quality of test sef is measured by its ability to
distinguish the behavior of the mutants from the

for examination, they should be weighted differently
depending on their respective fault detection capability.
Mathur proposed a variant of Acrest al’s idea:

behavior of the original program. So, the goal is to find Constrained Mutation [11]. In Constrained Mutation we
a test case that causes a mutant to generate a differergelect a subset of mutant operators to be used in mutant
output from that of the original program. A mutant is generation Satisfactory results have been obtained
considered equivalent if no such test case exist® If [20][21]. It is important to observe, however, that
behaves as per the specification witeis applied, then  Constrained Mutation does not establish a method for
the quality of T is demonstrated; otherwise, a fault has selecting the operators to be used; in general, these
been detected and the debugging activity would take operators are intuitively selected based on the
place. authors’ experience. The definition of systematic ways
A test set that kills all non-equivalent mutants is for selecting the operators may lead us to better results.
said to be adequate relative to Mutation Testing, Offutt et al. introduced Selective Mutation [14]. In
denoted by MT-adequate. The mutation score is thethis approach, the method for selecting the operators is
ratio of the number of dead mutants to the number of related to the quantity of mutants that each operator
non-equivalent mutants; it measures the adequacy ofgenerates: the operators that create the most mutants
test set. It should be observed that it is expected thatare not applied. So, th¥-Selective Mutation omits the
complex faults be coupled to simple faults in such a N most prevalent operators. In another study, in the
way that a test set that detects all simple faults in asame research line, Offutit al [15] introduced the
program will detect most complex faults. This is the so- concept of sufficient mutant operators. The idea is to
called coupling effect assumption [9]. determine a set of sufficient mutant operat&sn a
such way that obtained a test JeS-adequatel would
lead to a very high mutation score. Next, two relevant
studies related to the determination of sufficient mutant
operators are described. In the remainder of this paper
we refer to these approaches as Selective Mutation.

2.1 Alternative Mutation Testing Criteria

Some empirical studies have provided evidences that
Mutation Testing is among the most promising criteria
in terms of fault detection [20][21][15][22]. However,
as highlighted before, Mutation Testing often imposes 22 Related Work
unacceptable demands on computing and human
resources because of the large number of mutants thaOffutt et al conducted an experiment for
need to be compiled and executed on one or more testetermination of sufficient mutant operators
cases. In addition, a tester needs to examine manyFORTRAN language [15], using thdothra tool [10].
mutants and analyze them for possible equivalenceThe 22 mutant operators implemented in this tool are
with the program under testing. For these reasons,divided into three mutation classes: replacement of
Mutation Testing is generally regarded as too operands, expression modification and statement
expensive to use. modification. Offutt et al compared the mutation
The test community, to deal with the cost aspects, classes pairwise and noticed that with the five
has investigated some approaches derived fromoperators of expression modification class it was
Mutation Testing: Randomly Selected Mutation [1], possible to obtain a significant reduction in the number
Constrained Mutation [11] and Selective Mutation of mutants generated (77.56%), preserving a high
[14][15]. In fact, the goal is to determine a set of mutation score with respect to Mutation Testing (above
mutations in such a way that if we obtain a testTset 0.980). One important point to be observed is that all
which is able to distinguish those mutatiofiswill also the sufficient mutant operators determined were not
be MT-adequate. In other words, the idea is that severalamong the most six prevalent FORTRAN operators,
mutants can lead to the same test case selection, so thaweaning that this approach would improve the
we can use subsets of operators or mutants that lead t&-Selective criterion.
select test sets as effective as the total set of operators In another experiment, conducted by Woeg al
and mutants would [3][8]. [22], the Selective Mutation was investigated in the
context of C and FORTRAN. For C language, it was

the
for



3 GUIDELINES FOR DETERMINATION OF A
SUFFICIENT MUTANT OPERATORS SET

usedProteum[6], a testing toolthat allows measuring
the adequacy of the test sets with respect to (wi#1.)
mutant operators, categorized in four mutation classes
[2]: statement (15), operator (46), variable (7) and ConsiderMCy, MC,, ..., MC, sets that represent mutant
constant (3). Six selective mutation categories were operators classes. Mutation Testing (MT) uses, in its
constructed, based on 11 of the 71 mutant operatorsoriginal conception, the set of all mutant operators

These mutant operators were selected based on thelefined byOP = MC, O MC, O ... 0 MC,. Any subset

authors’ judgement of their relative usefulness.

of the mutant operatorSC O 2(°% establishes a

According to the authors, 6 of the 11 operators may selective criterion.

constitute a very good starting point for establishing a

Given a selective criterioBC, a test seT is said to

sufficient set of mutant operators to use in an alternatepe SGadequate ifT obtains a mutation score of 1.000

cost-effective mutation. Some of tH&roteum mutant
operators are illustrated in Table 1.

Table 1. Sample dProteumMutant Operators [2]

Mutant Operator Description
SMTC n-trip continue
SSDL statement deletion
STRP trap on statement execution
SWDD while replacement bglo-while
OASN arithmetic operator by shift operator
OEBA plain assignment by bitwise assignment
OLBN logical operator by bitwise operator
OLLN logical operator mutation
OLNG logical negation
ORRN relational operator mutation
VTWD twiddle mutations
VDTR domain traps
Cccr constant for constant replacement
Ccsr constant for scalar replacement
CRCR required constant replacement

w.r.t. the mutants generated by th8C mutant
operators, i.e., ifT is able to reveal the behavioral
differences amond (program under test) and the non-
equivalent mutants created by tS&€ operators. From
now on, if SCis composed by only one operatop
(SC={op}), it will be used simplyop.

A meaningful mechanism used to compare the
testing criteria is the Inclusion Relation, defined by
Rapps and Weyuker [16]. LeE; and C, be testing
criteria. C; includesC, (C; O GC,) if for every test set
T, C;-adequate,T; is also C,-adequate and there is
someT, C,-adequate that is nd@;-adequateC; andC,
are equivalent if for anyT Cj-adequate, T is
C,-adequate and vice-versa. Based on this, other
relations have been defined: ProbBetter [19], related to
the effectiveness of the criteria; and ProbSubsume [12],
related to the strength. For instance, a testing criterion

We reproduced the experiments conducted by Offutt C; ProbSubsume€, for a progranP if a test sefl that

et al. and Wonget al. for two other sets of programs: a
suite of 27-C programs which composed a simplified
text editor, previously used by Weyuker [18]; and 5-
Unix utility programs previously used by Worgd al.
[23]. Applying the strategy of Offutet al. on the 27-

is adequate with respect tq & “likely” to be adequate
with respect taC,. If C; ProbSubsume€,, C, is said to
be at least as more difficult to satisfy th@n

The underlying concepts of these relations leaded us
to define the empirically adequacy concept and the

program suite we obtained the constant mutation classEmpSubsumes Relation. In practice, for time and cost
as the sufficient set, with a mutation score of 0.97143 constraints, obtaining a mutation score near to 1.000
and a cost reduction of 78.115%, in terms of the may be satisfactory. Offutet al. argument that the
number of generated mutants. For the software testing literature offers no clear evidence that
5-program suite we obtained the operator mutation 100% coverage provides better testing than coverage at
class as the sufficient set, with a mutation score of a lower level [15]. Lems' be a mutation score defined
0.99042 and a cost reduction of 66.269%. Applying the by the tester. For a criteriod and a test sef, T is said
operators investigated by Worgg al. [22] we obtained to be empirically adequate t€ (denoted byT is

a mutation score of 0.97979 and a cost reduction of C-adequate*) ifT obtains a mutation score equal or
79.738% for the 27-program suite and a mutation scoregreater thanms® w.r.t. C [3]. We assume thatC,

of 0.99195 with a cost reduction of 83.435% for the EmpSubsume£, with a mutation scorens® (denoted
5-program suite [3].

The results obtained with the intuitively set of
operators proposed by Worgt al. were little better
than the results obtained with the sufficient set
obtained with the application of Offu#t al.’s strategy
in the context of C language for the two suites of > als e
programs. It should be highlighted that the sufficient The determination of a sufficient mutant operators
operators determined by Offuet al's approach for the ~ Set consists in selecting a sub&&0 2°”, whereOP
27-program suite were among the most preva|ent onesiS the total set of mutant operators defined for a target
for C-language, conflicting witiN-Selective mutation. ~ language, such that if a test §ets SSadequateT will
Moreover, the sufficient operators were completely also beOP-adequate*. In other words, if obtains a
different for each program suite. Motivated by these mutation score of 1.000 w.rtSS T will have a
results and based on Offwt al’s idea, we defined the ~Mmutation score equal or greater thars® w.r.t. OP
Sufficient Procedure [3][4], a systematic way to (Mutation Testing). It is important to observe that,
select a set of sufficient mutant operators, based on thed!VEN a mutation scorens', there is not only one
guidelines discussed in the next section. sufficient mutant operator set.

ms*
by C,; 0 C,) if for every test sefl; C;-adequateT; is
also C,-adequate* and there is sonie C,-adequate
that is notC;-adequate*.C, and C, are empirically
equivalent (denoted by equivalent*) if for any
C;-adequateT is alsoC,-adequate* and vice-versa.
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Given the testing criteri€; andC,, C; determines a
high mutation score w.r.tC, if every test setT
C,-adequate has a high mutation score w@;t.i.e., if

The proposedutticient Procedure [3][4] has been

refined through the conduction of two experiments,
discussed in the next sections. It has six steps, related

T is able to distinguish the most mutants generated byto the guidelines discussed above:

the mutant operators @,.

Since SS should determine a high mutation score
w.r.t. OP, we establish some guidelines to be
considered in selecting the mutant operators that will

Step 1: Select mutant operators that determine a high
mutation score w.r.OP.

Step 2: Select one operator of each mutation class.

. Consider mutant operators that determine a high

ii. Consider one operator of each mutation class

iv. Establish an incremental strategy

compose SS [3]. These guidelines lead to consider
information on subsumption of some mutant operators
by others, as motivated by Offudt al. [15].

Step 3: Reduce the preliminary sufficient $5).
Step 4: Establish an incremental strategy.

Step 5: Select mutant operators that provide an increment
in the mutation score.

Step 6: Select mutant operators with high strength w.r.t.
OP.

mutation score

To guarantee that the sufficient mutant operators set
determines a high mutation score w.r.t. Mutation Testing,

we should select the operators that determine the greatest
mutation scores w.r.t. the total set of mutant operators 4 EXPERIMENT I

(OP). In same aspect, this capture the mutant operator

effectiveness in the sense used by Oféital [15], i.e., The methodology used to conduct this experiment
its mutation score against the full set of operators. comprises five phases: Program Selection, Tool
Selection, Test Set GeneratioButficient Procedure

Each mutation class models specific errors in certain APplication and Data Analysis.
elements of a program (e.g. statements, operators, _
variables and constants). So, it is desirable that the4.1 Program Selection

sufficient set has, at least, the most representative operatog g ite of 27 small programs, part of a simplified text

of each class. editor, was selected. These programs, originally written
Evaluate the empirical inclusion among the mutant in Pascal, were converted to C; Weyuker [18] has also
operators used them. As illustrated in Table 2, these programs
The mutant operators that are empirically included by range in size from 11 up to 71 executable statements
other mutant operators of the sufficient set should beand have 119 up to 1631 mutants. In Table 2 it is also
removed since these operators increase the applicatioprovided information on the number of mutants per
cost of the sufficient set, in terms of number of mutants mutation class as well as on the number of equivalent
and equivalence determination, and do not effectively mutants.

contribute to the improvement of the testing activity. Table 2. Program Suite I:

X S , Number of LOC and Mutants
Given the application cost and the test requirements that

each mutation class determines, it is interesting to  Proaam Loc | e | oo T mov | ot | Eaiv | Torl ) aniy
establish an incremental strategy of application among the e | 13 | Sa/58 | 2375 | 2arie | evsse|  1meres
mutant operators of the sufficient set. The idea is to apply, s | 23 | 7501254 | 76715 | as0res| 12178 1a2 142
at first, the mutant operators that are relevant to certain o 13 930090 1 B0 | 223751 Ll 1,
minimal requirements of testing (e.g., all-nodes and all-  gnearel 19| 322729 farz pm 1 o
i it i dodash | 15 1071/ 202 62/1 423 /71 341/91 24539
edges coverage). Next, depending on the criticality of the et 521 P22 8200 1 83001 0% G/is
application and the budget and time constraints, the ey 12| e 8912 144120 T9i7 s/0
mutant operators related to other concepts and test gewemd| 32| 860/19 57471 44714 1014 23210
. . getdef 31 840 /134 136 /7 308 /54 208 / 47 188 /26
requirements may be applied. eins | 23 | o27/135 | 6a/s | o3assa| 162/4s 10813
getfns
Consider mutant operators that provide an increment S| G| i gors slosse | 1sorso) 1E2i3
|n the mutatlon score getone | 23 834 /122 98/4 397 /67 205/38 134/13
A . gtext 16 804 /82 55/3 331/37 224139 194/3
In general, independently of the quality of the test set,  makepay 29| 16851266 |  151/4 | 516798 | soi/108 422/
80% of the mutants are killed at the first execution [5]. o | feeiive | i | el sl e
Considering that just around 20% of the mutants — =wet| oo fo900)  1587e | 7/t TRitn oy
effectively contribute to the quality improvement of the unrotate| 28 | 98443 92/0 441/20 | 189/19 26214
. & . Total 618 | 20146/3136 2991/139 7467 / 1363 5279 /1155 4409/ 479
test set, an increment of 1% in the mutation score
represents 5% of the mutants that are really significant.
Thus, the non-selected operators that if included in the4.2 Tool Selection
sufficient set would increase the mutation score should be\ye ;sed Proteum testing tool [6], developed at

analyzed. University of Sdo Paulo, which supports Mutation
Consider mutant operators with high strength Testing application to C programs.

Other operators that should be considered to determine the

sufficient set are those that have a high average strength

w.r.t. each operator of the total set of operators.



4.3 Test Set Generation Table 3. Program Suite I:

One ad hoctest set was generated for each program Sample of the Average Mutation Score per Operator

based on its specification, i.e., none functional criterion Og\op 100085 OC§ZF7 %%%E %F;F;'l“ %SQDBE SOS\é\g\g Vg\ngAgeggge
. ccr . . . . . . .92 .

has been used. Next, these test sets were improved cc | 0902 1.000 0.992 0.938 0908 0.835 0974 0.943
based on their adequacy w.r.t. Mutation Testing: new CRCR|0.901 0.982 1.000 0.915 0.910 0.835 0.973 0.937

; ) ORRN | 0.900 0.863 0.870 1.000 0.921 0.465 0.865 0.897
test cases were added to obtain a MT adequate test Selyqp’ | 0.0s 0.853 0.881 0887 1000 1.000 0.868 0885
for each one of the 27 programs. We kept in these sets sswwm| 0.470 0.580 0.500 0.890 0.840 1.000 0.495 0.594
only effective test cases, i.e., test cases that killed at VTWD |0.902 0.950 0.969 0.916 0.905 0.800 1.000/ 0.928

least one mutant.

Averagg 0.732 0.719 0.730 0.767 0.786 0.544 0.73 -

From Table 3 we can extract the following
information:

For eat_:h program, the_ cost of the mutant operators was,  po average mutation score gf-adequate test sets
determined. In Graphic 1 we provide information on .
w.r.t. all og O OP. For instance, on average, the

the mutant operators cost in terms of number of . I :
. . mutation score that ORRN (fifth line) determines w.r.t.
generated mutants and in terms of number of equivalent Cosr (third column) is 0.863, ie, the

mutants for the most prevalent ones. From 71, only 39 LT 0
operators were applicable (i.e., generate at least one ORRN-adequate test sets are able to distinguish 86.3%
of the mutants of Ccsr.

mutant) to the 27-program suite: 10 of statement, 21 of '
The average mutation score ofi-adequate test sets

operator, 5 of variable and 3 of constant. - 1

w.r.t. OP. For instancepn average, ORRN-adequate
test sets determine a mutation score of 0.897 w.r.t.
w00 Mutation Testing.

The average strength ofy w.r.t. op, op O OP. For
an instance, on average, the strength of Ccsr w.r.t. ORRN
0 is 0.137 (1 - 0.863).

The average strength ofy w.r.t. OP. For instancegn
- average, the strength Gcsr w.r.t. Mutation Testing is

0.281 (1 - 0.719).

From Graphic 1(a) and Table 3, we obtained
Table 4. This table presents the mutant operators
(a) ordered according the mutation score, strength and cost
— required information for applying th&ufficient
Procedure.

4.4 Sufficient Procedure Application

2500 L

1000 "

Number of Mutants

OESA ORBN OARN OEBA SSDL STRP ORAN ORRN VTWD OEAA SRSR Cccr VDTR Cesr CRCR Vit

Mutant Operators

25.0

Table 4. Program Suite I:
Order of Operators According to:
150 (a) Mutation Score, (b) Strength afr) Cost

20.0

Percentage

OESA ORBN OARN OEBA SSDL STRP ORAN ORRN VTWD OEAA SRSR Cccr VDTR Ccsr CRCR Vsir
Mutant O perators
OEquivalents of op / Total of Mutants
BEquivalents of op / Total of Equivalents

(b)

Graphic 1. Program Suite I:
Mutant Operators Cost per Number of:
(a) Generated Mutants and (b) Equivalent Mutants

Following, the mutation score of the adequate test

sets for each operatop w.r.t. each other operat@p,

10.0 (a)

(b)

(c)

Mutation Score

Strength

Cost

Ccsr (0.948)
Vsrr (0.948)
CRCR (0.937)
VTWD (0.928)
Cccr (0.922)
ORRN (0.897)
VDTR (0.891)
SSDL (0.885)
ORSN (0.873)
ORAN (0.872)
SRSR (0.866)
ORBN (0.856)

SSWM (0.456)
SWDD (0.364)
OABN (0.353)
SMTC (0.339)
OLSN (0.338)
Vprr (0.323)
OASN (0.310)
OLLN (0.291)
OARN (0.283)
Ccsr (0.281)
CRCR (0.270)
VTWD (0.270)

Vsrr (2620)
CRCR (1631)
Ccsr (1559)
VDTR (1437)
Cccr (1219)
SRSR (1193)
OEAA (1010)
VTWD (958)
ORAN (830)
ORRN (830)
STRP (677)
SSDL (676)

of the total set of operators was determined, i.e., the To apply the Sufficient Procedure we used
capability of aop-adequate test set to distinguish the ¢ = 0.99, in fact the same index considered in
mutants of each operatop [J OP. Offutt et al’s study [15]. Table 7contains the

In Table 3 a sample of the average mutation scorepreliminary sufficient mutant operators setSS(e|)
per operator obtained for the 27-program suite is obtained at each step of the procedure application. The
presented. set of mutant operators that are not preserB. is

referred to asS_Spre| , i.e., SSprel = OP - SGyal.



In Step 1, considerindAIMS (Average Index of the greatest strength, it was addedSi§,.. Repeating
Mutation Score) = 0.90& 0.005 and Table 4(a), we this step the operator OASN was also included. At the
obtained S$,e = {Ccsr, Vsrr, CRCR, VTWD, Cccr, end of Step 6, the final sufficient mutant operators set
ORRN}. was SS27 = {SWDD, SMTC, SSDL, OLBN, OASN,

In Step 2 the operator SSDL was includedSige,, ORRN, VTWD, VDTR, Cccr, Ccsr}. It is important to
since it did not contain any operator of the statement observe that the greater thes* value is the greater can
mutation class. Moreover, SSDL, according to Table be the number of mutant operators included. For
4(a), on average, determines the greatest mutationinstance, if we had useds® = 0.98 the operator OASN
score w.r.t. the total set of operators among the would not have been included 8627.

0.99 i
statement mutation class aB&,, [1 {SSDL}. Table 6. Program Suite I
In Step 3, as CRCR was the most empirically SSrerr Score of the High Strength Operators
includeq among the operators 8§, it was removed. Mutant Operator | Mutation Score
Repeating this step the operator Vsrr was also removed. SWDD 0.893
In Step 4, considering Table 4(c), we determined OASN 0.982
SSDL, ORRN, VTWD, Cccr e Ccsr as the incremental OVApér,\l 8'332
order to apply the mutant operatorsSf... o OLSN 1.000
In Step 5, in this case, we aimed at including in SSWM 1.000

SSre at most one additional operator of each mutation

class. We also definedMl (Index of Minimum 4.5 Data Analysis
Increment) = 0.001, what represents to addStg . . L
those operators that allow distinguishing at least 0.5% !N this section we carry out some analysis with the data

of the significant mutants. According to Table 5, which obta_\in_ed with ) t_he procedure application._ The
contains information about the mutation score Préliminary sufficient sets 93.) and the final
sufficient set §£S27) are analyzed w.r.t. Mutation

increment each operator BSprei provides in the first Testing. The mutation score (MS), the cost reduction
iteration, the nine first operators were considered. (CR) and the cost/benefit (CR/MS) evolution are
Starting with the statement mutation class, we observedpresented in Table 7 and in Graphic 2. Notice that for
that SMTC (0.003875) was the operator that determinesthe relation CR/MS we are only interested in sets with
the greatest increment; in the same range of incrementa high mutation score, otherwise a set with a cost
(0.003) was also the operator SMTT (0.003386). As reduction of 99% and a mutation score of 0.01 would
SSrer empirically included neither SMTC nor SMTT  a|so look good.

and since the strength of SMTC was the greatest,
SMTC was added td5S... This step was repeated
looking for the operator, variable and constant

Table 7. Program Suite |: Results Obtained at
Each Step of th&usricient Procedure

!”nutanons_. At the end, SMTC, OLBN and VDTR were Step | Mutant Operators VS CR (%) | CRIMS
included inSS$re and an increment of 0.007531 was 1 [{Ccsr, Vs, CRCR, |0.98087| 56.234| 0.573
obtained, what represents more than 3.7% of the VTWD, Cccr, ORRN}
VTWD, Cccr, ORRN,
Table 5. Program Suite I: Mutation Score Increment SSDL}
3 | {Ccsr, VTWD, Cccr, |0.98839| 73.980 0.748
Mutant Index of SSrel Score + ORRN, SSDL}
Operator Increment Increment 4 {SSDL, ORRN, 0.98839 73.980 0.748
SMTC 0.003875 0.992269 VTWD, Cccr, Ccsr}
varr 0.003407 0.991801 5 | {SMTC, SSDL, OLBN,| 0.99592| 65.988 0.663
SMTT 0.003386 0.991780 ORRN, VTWD,
VDTR 0.002425 0.990819 VDTR, Cccr, Ccsr}
vsrr 0.001525 0.989918 6 |{SWDD, SMTC, 0.99660| 65.015 0.652
OLAN 0.001286 0.989680 SSDL, OLBN,OASN,
OLRN 0.001273 0.989667 ORRN, VTWD,
OLBN 0.001231 0.989624 VDTR, Cccr, Ccsr}
ORAN 0.001116 0.989510
OEAA 0.000869 0.989263 1000 9
ORBN 0.000803 0.989197 0.995 | 17 2
OABN 0.000118 0.988512 g %0 ® 5
Vprr 0.000026 0.988420 D 0.5+ T4 35
. . K] o}
In Step 6, considering Table 4(b) and |E§ %07 T e
AIS (Average Index of Strenght) = 0.3@00.005, the = o975 ¢ t15 §
operators SSWM, SWDD, OABN, SMTC, OLSN, Vprr 0.870 ; ; ; ; ; 0
and OASN were taken of high strength. According to Stepl  Step2  Step3  Stepd  StepS  Stepd
Table 6, which contains the mutation score t8&; Steps

—&— Mutation Score —e— Cost Reduction

determines w.r.t. the operators of high strength, SWDD
and OASN were not empirically included 138, and

were taken in consideration. Since SWDD presented Graphic 2. Program Suite |I: Sufficient Set Evolution



We also carry out a comparison among the sets: Another relevant aspect to be considered is the
SS27; CSS27 (the constrained sufficient set from effectiveness of the criteria. If we consider
SS27, composed of the most representative operator ofeffectiveness by computing the mutation score of the
each mutation class, i.e., the operator that determinesadequate test sets w.r.t. a specific criterion against the

the greatest mutation score for that class)QOffutt27 full set of operators, we would recommergS27,
(the operators obtained from Offugt al’s strategy); 6-Selective27 and 40%Randomly respectively, as
S-Wong (the operators proposed by Worat al); they determine mutation scores greater than 0.990 and

6-Selective27 mutation; and some randomly mutation are in the same range of cost/benefit. Other approach
criteria (10%, 20%, 30% and 40%). The results in would be measuring the relative abilities of the
terms of mutation score (MS), cost reduction (CR) and adequate test sets w.r.t a criteriGnto detect actual
cost/benefit (CR/MS) are summarized in Table 8 and in faults in the programs. Wonet al. [20][21][22] have
Graphic 3. provided evidences that Selective Mutation is more
effective in revealing faults than Randomly Mutation.
Giving these considerations, we focus our analysis on
the selective criteria.

Table 8. Program Suite I: Comparison among Selective
and Randomly Mutation

Criterion MS CR (%) | CRIMS Table 9 provides a strength analysis among the
SS27 0.99660 |  65.015 0.652 selective criteria. For example, the strengthS827
s-%sffifzm g:ggigg ?gﬁé 8_‘232 w.r.t. S-Offutt27 is measured by calculating the
S-Wong 097979 | 79.738 0.814 average mutation score th&-Offutt27-adequate test
6-Selective27 | 0.99242 | 47.945 0.483 sets provide w.r.t. the mutants generated by the

10%-Randomly | 0.97160 | 90.038 0.926 operators 06S27. We can observe that:

20%-Randomly | 0.98791 79.554 0.805 . .
30%-Randomly | 0.99120 | 69.006 0.696 » For all programs, the mutation score provided by
40%-Randomly | 0.99420 | 59.352 0.597 SS27 is equal or greater than those obtained with

S-Offutt27 andS-Wong

= SS27 includes S-Wong and CSS27, i.e., SS27-
adequate test sets are able to distinguish all mutants

os0 generated by the operators®WongandCSS27; the

0380 inverse is not true.

osmo = SS27 andS-Offutt27, andSS27 and 6Selective27

0360 are incomparable in the perspective of the inclusion

00 relation. However, SS27 empirically includes

S-Offutt27 and 6Selective27, i.e., SS27-adequate

1,000

Mutation Score

0.940

SS2 €SS SOMMZ Sdong Skl 0% 2% W% 0% test sets are able to distinguish, on average, 99.9% and
Criteria 99.6%, respectively, of the mutants generated by the
@) S-Offutt27 and 6Selective27 operators  while
S-Offutt27-adequate test sets andSélective?7-

adequate test sets are able to distinguish 97.2% and
98.8%, respectively, of the mutants generated by the
operators 06S27.

100.0

90.0

20 Table 9. Program Suite I: Strength Analysis

=

g 100y Criteria Mutation Score
2 w0 SS27 x CSS27 1.00000
z CSS27 x SS27 0.98353
e SS27 x S-Offutt27 0.99902
400 S-Offutt27 x SS27 0.97157
§8-27 CSS-27  S-Offutt-27  S-Wong  6-Select-27 10% 20% 30% 40% 5527 x S-Wong 100000
Criteria S-Wongx SS27 0.98353
b SS27 x 6-Selective27 0.99650
( ) 6-Selective27 x SS27 0.98798

Graphic 3. Program Suite |: Selective and Randomly The uniformity of the mutation scores determined

Mutation: (a) Mutation Score and (b) Cost Reduction by the selective criteria for all the programs, illustrated
On average we can observe that: in Tgble 10(a), is also a relevant data.. Table 10(b)

o i ' . provides the corresponding cost reduction for each
* The SS27 criterion determines the greatest mutation rogram. According to these tables, we notice that:

0,
score followed by 40%andomly although the  cost SS27 determines a mutation score equal 1.000 for 13

reduction they prowd_e a_re not th_e greatest. programs followed by &elective27 andS-Wongwith
»  The 10%Randomlycriterion provides the greatest cost 11 and 5 programs, respectively.

reduction followed b)[:SSZ?. o . ® SS27 determines a mutation score greater than 0.990
* In terms of cost/benefit the best criterion is for 25 programs followed by Belective27, CSS27
10%Randomlyoliowed byS-WongandCSS27. andS-Wongwith 20, 15 and 11 programs, respectively.



Table 10. Program Suite I: Distribution of
(a) Mutation Score and (b) Cost Reduction

(a)
Program Mutation Score i
SS27 | CSS27|S-Offutt-27| S-Wong| 6-Selective27
append | 1.00000, 0.99381 0.99071f 1.00000 0.99381
archive |0.99772 0.98178 0.95900, 0.98178 1.00000
change | 1.00000] 0.90000  0.76000, 0.90000 1.00000
ckglob |1.00000 1.00000 0.98387| 1.00000 1.00000
cmp 1.00000, 1.00000 0.99743 0.98972 0.98972
command 0.99896| 0.94606 0.96473| 0.94917 0.93361
compare | 1.00000, 0.99089  0.95900, 0.99089 1.00000
compress| 1.00000, 0.98638 0.98365 0.98638 1.00000
dodash |0.99540| 0.99540 0.97814| 0.98044 0.99425
edit 0.95844| 0.94286  0.95584| 0.95584 0.97922
entab |1.00000/ 1.00000 1.00000, 1.00000 1.00000
expand | 0.99432| 0.98579 0.96875  0.96591 1.00000
getcmd | 1.00000/ 1.00000 1.00000{ 1.00000 1.00000
getdef |0.99858 0.99858 0.98725 0.99858 1.00000
getfn | 1.00000| 0.98522 0.97044| 0.99015 0.99015
getfns |1.00000/ 0.9979Y 0.97967| 0.98984 1.00000
getlist |0.99829 0.99316 0.99145  0.98803 0.98462
getnum | 0.98982| 0.98982  0.97149| 0.96945 0.99389
getone |0.99438 0.98876 0.97472 0.99017 0.99579
gtext |1.00000 0.99862  1.00000, 0.99862 0.99862
makepat| 0.99788 0.99647 0.99788  0.98024 0.97459
omatch | 1.00000] 0.98548 0.97742] 0.97742 0.98871
optpat |0.99346| 0.97386 0.95098 0.93464 0.99673
spread |0.99796| 0.98574  0.98065 0.99694 0.99491
subst |0.99700/ 0.99325 0.99025] 0.98800 0.98875
translit | 0.99602 0.99602 0.95518 0.95219 0.99801
unrotate | 1.00000 0.99044  1.00000{ 1.00000 1.00000
Average | 0.99660 0.98505 0.97143 0.97979 0.99242
(b)
Program Cost Reduction (%)
SS27 | CSS27|S-Offutt-27 | S-Wong| 6-Selective27
append | 68.217 | 82.429 81.912 79.845 38.501
archive | 53.113| 73.541 66.148 77.432 42.023
change | 73.950| 85.714 89.916 85.714 21.849
ckglob | 64.110| 78.356 80.548 74.658 39.178
cmp 60.233| 75.116 75.814 67.907 52.093
command 54.598| 73.985 68.186 79.619 60.646
compare | 67.635| 82.158 79.668 80.290 45.228
compress| 66.960| 78.855 86.784 70.925 35.463
dodash | 64.146| 79.739 77.124 76.004 45.285
edit 69.847 | 81.298 84.351 81.298 41.985
entab | 65.135| 77.297 84.324 74.865 38.378
expand | 68.123| 82.005 86.632 77.378 28.792
getcmd | 69.186| 95.465 73.023 95.000 83.488
getdef | 64.762| 80.595 77.619 82.857 47.024
getfn 62.753| 77.530 77.935 76.316 36.437
getfns | 59.330| 75.279 73.206 80.383 50.080
getlist | 65.634| 77.729 80.531 76.696 39.676
getnum | 61.879| 76.241 76.241 74.468 36.702
getone | 68.585| 80.695 83.933 77.338 36.930
gtext 64.179| 79.478 75.871 82.711 49.005
makepat| 63.815| 79.144 74.926 80.095 57.992
omatch | 64.405| 77.976 77.976 75.595 44.762
optpat | 65.766| 79.730 80.180 75.225 35.586
spread | 68.992| 81.904 80.961 83.223 50.236
subst 74.801| 84.672 85.224 83.446 57.817
translit | 64.711| 78.578 78.933 79.111 43.644
unrotate | 61.789| 81.301 73.374 84.858 43.293
Average | 65.015| 80.031 78.115 79.738 47.945

SS27 determines a mutation score below 0.990 just for

the prograngetnum(0.98982) anebdit (0.95844).

SS27 does not determine a mutation score below ang in terms of number of equivalent mutants for the

0.950 for any program. The same does not happen withs_program suite, for the most prevalent operators. 56
S-Offutt27, S-Wongand6-Selective27.

S-Offutt27, CSS27 and S-Wongdetermine mutation

= The greatest cost reduction obtained wil%27,
CSSs27, S-Offut27, S-Wongand 6Selective27 sets
are 74.8%, 95.5%, 89.9%, 95.0% and 83.5% with a
mutation score of 0.997, 1.000, 0.760, 1.000 and 1.000,
respectively.

= The least cost reduction obtained wit8S27,
CSS27, S-Offut27, S-Wongand 6Selective27 sets
are 53.1%, 73.5%, 66.1%, 67.9% and 21.85% with a
mutation score of 0.998, 0.982, 0.959, 0.988 and 1.000,
respectively.

Considering mutation score, cost reduction, strength
and mutation score distribution, tH&S27 set would
constitute the best choice as it determines the greatest
mutation score, empirically includes the other selective
criteria and presents an excellent mutation score
uniformity, although it does not present the best cost
reduction.CSS27 andS-Wongwould also constitute a
good choice as these criteria present the best
cost/benefit relation. Another point that favors these
sets is that the cost to obtain them is very low; in fact,
for S-Wongthere are no costs at all.

5 EXPERIMENT II

The same phases of Experiment | were also applied for
a set of 5-Unix utility programs. The main difference
was that, in Test Set Generation, 11 MT-adequate test
sets were used for each one of the 5 programs. Initially
we generated a pool of test cases composed bwpd1)
hoc functional test cases, based on program
specification; and 2) randomly generated test cases.
From this pool, 11 test sets were generated for each
program. Next, we ran the test cases of each test set
against the mutants and, if necessary, we added manual
test cases to the set until we have obtained a
MT-adequate test set.

As illustrated in Table 11, these programs range in
size from 76 up to 119 executable statements and have
1619 up to 4332 mutants. In Table 11 it is also
provided information on the number of mutants per
mutation class as well as on the number of equivalent
mutants.

Table 11. Program Suite Il:
Number of LOC and Mutants

Program | LOC Mutants Statement Operator Variable Constant
Total / Equiv | Total / Equiv | Total / Equiv | Total / Equiv | Total / Equiv
cal 119 4332221 352/3 1409/ 86 791 /11 17801715
checkeq| 76 3099/ 206 268/1 937 /99 7837106 1111/0
comm | 119 17281166 405 /5 642 /111 367 /35 314 /15
look 107 2056 /143 319/23 7201736 646 / 55 371/29
uniq 103 1619/93 348 /0 621 /64 406 /28 24411
Total 524 12834 /829 1692 /32 4329 /39 2993/341 3820/ 60

In Graphic 4 we provide information on the mutant
operators cost in terms of number of generated mutants

operators were applicable to the 5 programs: 14 of
statement, 33 of operator, 6 of variable and 3 of

scores of 0.760, 0.900 and 0.900, respectively, for theconstant.

program change while SS27 and 6-Selective27

present mutation scores of 1.000.
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Graphic 4. Program Suite II:

Mutant Operators Cost per Number of:
(a) Generated Mutants and (b) Equivalent Mutants

For Experiment Il, the sufficient mutant operators
set wasSS5 = {SMTC, SSDL, OEBA, ORRN, VTWD,
VDTR}. We carry out the same analysis as for the
Experiment I. The preliminary sufficient set§%e)
and the final sufficient setSS5) are analyzed w.r.t.
Mutation Testing. The mutation score (MS), the cost
reduction (CR) and the cost/benefit (CR/MS) evolution
are presented in. Table 12 and in Graphic 5.

Table 12. Program Suite II: Results Obtained at
Each Step of th&usricient Procedure

Step Mutant Operators MS CR (%) | CR/IMS

1 {Cccr, Vsrr, VTWD, 0.99662| 52.680 0.529
SSDL, ORRN, Ccsr}

2 {Cccr, Vsrr, VTWD, 0.99662| 52.680 0.529

SSDL, ORRN, Ccsr}
{VTWD, SSDL, ORRN} | 0.99209| 89.224 0.899
{SSDL, ORRN, VTWD} | 0.99209| 89.224 0.899
{SSDL, OEBA, ORRN, | 0.99733| 82.305 0.825

VTWD, VDTR}
6 {SMTC, SSDL, OEBA, | 0.99761| 82.048 0.822
ORRN, VTWD, VDTR}
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Graphic 5. Program Suite |I: Sufficient Set Evolution

The results in terms of mutation score, cost
reduction and cost/benefit for Selective and Randomly
Mutation are summarized in Table 13 and in Graphic 6.
We can observe, on average, that:

= The 6Selectives criterion determines the greatest
mutation score followed b$S5.

= All criteria but 10%Randomlydetermine a mutation
score greater than 0.990.

= CSS5 provides the greatest cost reduction followed by
10%-Randomly S-WongandSS5.

= |n terms of cost/benefit the best criterion is
10%-Randomlyfollowed byCSS5, S-WongandSS5.

Table 13. Program Suite II: Comparison among
Selective and Randomly Mutation

Criterion MS CR (%) CR/MS
SS5 0.99761 82.048 0.822
CSS5 0.99209 89.224 0.899

S-Offuttb 0.99066 77.014 0.777

S-Wong 0.99195 83.435 0.841

6-Selectiveb 0.99858 51.340 0.514
10%-Randomly | 0.98799 89.045 0.901
20%-Randomly | 0.99501 77.700 0.781
30%-Randomly | 0.99685 67.835 0.680
40%-Randomly | 0.99720 57.675 0.579
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0.992
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0.984

Mutation Score

0.980

0.976
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Graphic 6. Program Suite Il: Selective and Randomly
Mutation: (a) Mutation Score and (b) Cost Reduction

If we favor the effectiveness of the criteria in terms
of the mutation score of the adequate test sets w.r.t. a
specific selective criterion against the full set of
operators, we would recommen8S-5 CSS-5 and
S-Wong respectively, as they determine mutation
scores (greater than 0.990 and are in the same
cost/benefit range.



From now on we focus our analysis on the selective
criteria. Table 14 provides a strength analysis among
the selective criteria. We can observe tB&5 presents
the greatest strength to the other selective criteria.
If we consider m = 0.99 we can say that

SS50] S-Offutt5 and that SS5
equivalent toS-Wongand 6Selectives.

is empirically

Table 14. Program Suite II: Strength Analysis

6 EXPERIMENT | X EXPERIMENT Il

In this section we crosscheck the selective criteria
obtained for Experiment | against Experiment Il and

vice-versa. This give us an idea of the goodness of each
selective criterion determined based on a suite of
programs (or application domain) for another programs
(or domains). Table 16 gives the mutant operators that
compose each selective criterion. The mutation score
and cost reduction obtained for the two experiments

Criteria Mutation Score . S . .
SS5 x CSS5 1.00000 applying these criteria are summarized in Table 17.
C585 x S5 0.98443 Table 16. Selective Criteria Mutant Operators
SS5 x SOffutt-5 0.99813
S-Offutts x SS5 0.98421 Criterion Mutation Class
SS5 x S-Wong 0.99993 Statement | Operator | Variable | Constant
S-Wongx SS5 0.99175 SwDD OLBN |\ rwp Ccer
SS5 x 6-Selectives 0.99619 Ss27 SMTC OASN VDTR Cosr
6-Selectives x SS5 0.99263 SSDL ORRN
: i ) . SMTC OEBA VTWD
The uniformity of the mutation scores determined SS5 SSDL ORRN VDTR -
by the selective criteria for all the programs and the  Ccss27 SSDL ORRN VTWD Ccsr
corresponding cost reduction for each program are _ CSS5 SSDL ORRN VTWD -
i i i . Cccr
illustrated |r1 T.able 15. We notice thf.at. S-Offutt27 B _ B Cear
= None criterion determines a mutation score equal 1.000 CRCR
for any of the 5-Unix programs. Vprr
. N . Varr
= Only SS5 and 6Selectives criteria determine S-Offutts _ - VTWD -
mutation scores greater than 0.990 for all programs. VDTR
* The greatest cost reduction obtained with 8®5, ST Vst
CSS5, S-Offutt5, S-Wongand 6Selectives sets were S-Wong STRP OLNG VTWD _
85.9%, 92.3%, 82.1%, 87.6% and 60.4% respectively. OorRRN | VPTR
: : : 6-Selective27 | OP - {Vsrr, CRCR, Ccsr, VDTR, Cccr, SRSR}
n
The least cost reduction obtained with tI&S5, 6-Selectives | OP - {Cocr Vsrt. Gesr, CRCR, VDTR. ORRN)

CSS5, S-Offutt5, S-Wongand 6Selectiveb sets were
77.9%, 84.5%, 69.5%, 79.5% and 38.5%, respectively.

Table 15. Program Suite II: Distribution of
(a) Mutation Score and (b) Cost Reduction

Table 17. Selective Criteria: An Overview of the
Mutation Score and Cost Reduction

Criterion 27-Program Suite 5-Program Suite

MS CR (%) MS CR (%)
SS27 0.99660 65.015 0.9976 58.711
SS5 0.98870 77.440 0.99761 82.048
CSs27 0.98505 80.031 0.9941 76.165
CSS5 0.97567 87.769 0.9920¢ 89.224
S-Offut-27 0.97143 78.115 0.9882 70.235
S-Offutts 0.93850 73.796 0.9906¢ 77.014
S-Wong 0.97979 79.738 0.99174 83.435
6-Selective27 | 0.99242 47.945 0.99864 53.802
6-Selective5 | 0.99122 46.143 0.99854 51.340

(a)
Program Mutation Score _
SS5 | CSS5 | S-Offutt-5 | S-Wong| 6-Selectives
cal 0.99955 0.99674 0.99970 0.99961  0.99964
checkeq |0.99719 0.9927 0.98600 0.99713  0.99612
comm |0.99478 0.98725 0.98281 0.98802  0.99923
look [0.99677 0.98711 0.98838 0.98135  0.99990
uniqg  |0.99975 0.99667 0.99642 0.99366  0.99799
Average | 0.99761 0.99209 0.99066 0.99195  0.99858
(b)
Program Cost Reduction (%)
SS5 | CSS5 | S-Offutt-5 | S-Wong| 6-Selectives
cal 85.919| 92.267| 82.110| 87.581 56.948
checkeq| 81.413| 89.190, 74.734| 81.478 60.374
comm 77.951| 84.491 78.935 79.456 38.542
look 80.691| 89.494) 69.455| 83.268 45.331
uniq 78.999| 85.855 75.293| 80.544 40.334
Average | 82.048| 89.224 77.014] 83.435 51.340

As in Experiment |, considering mutation score,
cost reduction, strength and mutation score
distribution, theSS5, CSS5 and S-Wongsets would
constitute the best choices. Among the385 provides

From Table 17 we can conclude that the only sets
that determine mutation scores above 0.990 for both
experiments are SS27, 6Selective27 and
6-Selective5. Observe thatSS27 contains three
operators (Ccsr, VDTR, Cccr) that are among the six
most prevalent ones for Experiment | and four most
prevalent operators (Cccr, Ccsr, VDTR, ORRN) for
Experiment Il. Yet, it provides a greater cost reduction
than the 6Selectivesets for both experiments. The
criterion SS5 contains two operators (VDTR, ORRN)
that are among the six most prevalent ones for
Experiment Il and one most prevalent operator (VDTR)

the best mutation score, gives the best mutation scorefor Experiment I. The criterior8-Offutt5 is the only
uniformity and presents the greatest strength againstcriterion that determines a mutation score below 0.950

the other criteria. All of them provide a cost reduction
over 80%.

when applied to Experiment |. The criteri®Offutt27
provides mutation scores greater than 0.970 for both
experiments.



In Experiment | and Experiment Il, considering In the Offutt et al’s experiment it turned out the
mutation score, cost reduction, strength and mutationfive operators in the selective set account for 57% of
score uniformity we concluded that the s&§ CSS the equivalent mutants. In our experiments we obtained
(obtained by applying th&ugsicient Procedure) and  similar results. TheSS27 set accounts for 43.4%
S-Wong yield the best results. These sets have a(1361/3136) and 56.9% (472/829) of the equivalent

common set of operators as can be inferred from mutants in experiments | and I, respective§S5
Table 16 and illustrated in Figure 1. accounts for 39.6% (1242/3136) and 53.8% (446/829)
of equivalent mutants in experiments | and I,
respectively S-Offutt27 accounts for 15.3% and 7.2%,
ss27 sss opP while S-Offut5 accounts for 36.8% and 41.0% for

Experiments | and Il, respectivel\5-Wongaccounts

for 29.6% and 45.5% for Experiments | and II,
respectively. 6Selective27 accounts for 51.0% and
53.4%, while 6Selective5 accounts for 48.8% and

VTWD VDTR

ORRN 47.9% for Experiments | and II, respectively.

STRP One interesting fact in this scenario is that the
OLLN OLNG operators that generate the greatest percentage of the

S Wong equivalent mutants, in relation to either the total

number of equivalent mutants or the total number of
mutants, are among the "l5ones. The six most
prevalent ones account for 49.0% in Experiment | and
52.1% in Experiment Il.We would expect then the
Observe that, except for the presence of OEBA, the selective operators to be among the most prevalent
sufficient set for the 5-Unix programs is a subset of the ones, at least for C. This would conflict with applying
sufficient set for the suite of 27 programs. Also, N-Selective criteria. It should also be observed that all
observe that the operators SMTC, SSDL, ORRN, the selective criteria account for the same range of
VTWD and VDTR are common to both sufficient sets equivalent mutants. This is a point to be further
and ORRN, VTWD and VDTR are common to the investigated.
S-Wongset too. One final point to be analyzed is the evolution of
0.99
From Table 18, we can conclude t188270) SS5. the sufficient mutant operators sets obtained in each

From Table 9 and Table 14 it can also be concludedStep of the Sukficient Procedure application.

Analyzing Table 7 and Table 12 and Graphic 2 and
that SS27 1) S-Wongand thatSS5 and S-Wongare Graphic 5 we can conclude that Step 1 and Step 2 favor

0.99
empirically equivalent. In particularsS270 STRP, the mutation score while Step 3 favors the cost
099 099 reduction, eliminating those mutants empirically
SS5270 OLLN and S5270 OLNG ?ggd so doesSs. included by others. In Step 4 we have the best
It is important to observe th&S270 OEBA, but for cost/benefit. Step 5 and Step 6 favor the mutation score
programlook. By the other hand, two of the common again, looking for relevant operators of each mutation

operators (VDTR, ORRN) are among the most class and for the high strength operators. This
prevalent ones. information should be used in a further refinement of

the Sutficient Procedure proposed in this paper.

Figure 1. Commonality among§S27,SS5
andS-WongCriteria

Table 18. Strength Analysis of the Sufficient Sets

Experiment Criteria Mutation Score 7 CONCLUSIONS AND FURTHER WORK
orprogam sud SS2USSE | 0% o .
: We report in this paper two experiments toward the
5-Proaram Suite| SS27* SS5 0.99821 det inati f sufficient tant t for C. i
g SS5 x SS27 0.99862 etermination of sufficient mutant operators for C, in

the same line of Offutet al’s study for FORTRAN
[15]. In the scope of these case studies a procedure for
the determination of a sufficient mutant operators set
for C language, in the context ®roteumtesting tool,
was proposed. Th&uttpicient Procedure [3][4], as it
was named, aims at providing a systematic way to
ec;etermine a selective criterion based on Mutation
esting. The proposed procedure synthesizes the
guidelines, discussed in this paper, for determination of
sufficient mutant operators we have devised motivated
by previous results in the area. The guidelines explore
concepts such as mutation score determined by a
specific operator, inclusion relation among the
operators, strength and mutation type. Along this study

Another point that should be highlighted is related
to the number of equivalent mutants generated per
operator. Offuttet al. [15] define thesemantic sizef a
fault to be the relative size of the input domain for
which the program is incorrect. They suggest that the
underlying goal of selective mutation is to try to only
use operators that tend to produce mutants that hav
semantically small faults. If this model holds, their
expectation would be that the selective mutants should
contain a high percentage of equivalent mutants, what
would impose costs to determine the equivalent
mutants. In other hand, we may focus heuristic to deal
with equivalent mutants just related to the sufficient
operators.



a comparison with the most relevant previous works on test set. Our measure of effectiveness considered just
this subject was also carried out. the mutation score of the selective criteria.

The Susficient Procedure application leaded to a Giving the considerations above we are motivated
considerable reduction on the number of available to further investigate and refine the sufficient sets,
operators (71) inProteum The sufficient mutant taking in consideration operator cost, in terms of
operators sets obtained provided a h|gh adequacynumber of generated mutants, of equivalent mutants
degree w.r.t. Mutation Testing: the mutation scores and of number of test cases. Also, further investigation
were above 0.995. Considering the application cost, in @nalyzing the abilities of the selective criteria to detect
terms of number of mutants, the reductions were, on real faults will be carried out.
average, above 65% As mentioned before, the sufficient set may be

In both experiments, considering the mutation dependent on the application domain and on the
score, cost reduction, strength and mutation scorePrograms used, i.e., the specific characteristics of each
distribution, the sufficient operator sets determined by Program (or suite of programs). This is also a point to
the application of theSusficient Procedure would be  be further investigated. Applying the procedure in other
among the best choice. They presented the greatesPrograms at different domains will generate a
mutation scores, empirically included the other noyvlledge base that may be used for improving the
selective criteria, presented an excellent mutation scoreSufficient set. . . .
uniformity among the programs and determined the Furt_her studies are been planned to investigate the
greatest strengths against the other selective criteria. scalab_lllty of thes_e results to larger programs. We are

The computational cost to determine a sufficient also interested n conduct a br_oad sele(_:tlon of
mutant operators set may strongly influence the choice programs, from d'ffefe”t application domains, to
of a specific approach. The aim is to define a replicate this study, in o_rc_zler to make the results
pragmatically, low-cost, domain-independent approach presented so far, more significant.

for the determination of such set. For instance, . A s[mllar s'gudy has been. ca_med out at the
Wong et al’s selective set is domain and program integration testing level, considering the Interface
independen.t Mutation criterion [8] and usindg’roteum/IM [7] — a

One important point to be looked at, related to the {00! that supports the testing of C programs at the

guidelines i and ii, are the good results obtained with Integration level, and S|m|lar results, to appear in a
the constrained sufficient set€$9, whichinclude the  forthcoming paper, were obtained.

more representative operator of each mutation class.

These sets constitute a very good start point to build upACKNOWLEDGEMENTS

a sufficient mutant operators set.

Another point is that the propose8ufticient
Procedure’s structure makes possible that the
determination of the sufficient set be done and applied
in an incremental way, according to system criticality
and time and budget constraints. If we apply just the
guidelines i to iv, i.e., just the operators obtained in
Step 4, we would have a high mutation score, with a
low application cost. The other two steps related to
guidelines v and vi, favor the test effectiveness, in
terms of mutation score, but compromise the .
cost/benefit relation. Institute of Technology, Atlanta, GA, September

In this work we did not take in account other costs 1979.
associated to Mutation Testing as well as the [2] H. Agrawal, R.A. DeMillo, R. Hathaway, W. Hsu,
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